Python实现的PCA算法:主成分分析(降维)技巧
今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《Python实现的PCA算法:主成分分析(降维)技巧》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!
Python中的PCA主成分分析(降维)技巧
PCA(Principal Component Analysis)主成分分析是一种非常常用的数据降维技术。通过PCA算法可以对数据进行处理,从而发现数据的固有特征,为后续的数据分析和建模提供更加准确和有效的数据集合。
下面我们将介绍Python中使用PCA主成分分析的一些技巧。
- 如何进行数据归一化
在进行PCA降维分析之前,首先需要进行数据的归一化处理。这是因为PCA算法是通过方差最大化来计算主成分的,而不是简单的元素值大小,因此充分考虑到了每个元素对应方差的影响。
Python中有许多方法可以进行数据归一化处理。最基本的方法是通过sklearn库的StandarScaler类将数据标准化为均值为0、方差为1的标准正态分布,代码如下:
from sklearn.preprocessing import StandardScaler scaler = StandardScaler() data_std = scaler.fit_transform(data)
这样我们就可以得到一个已经进行数据归一化处理的数据集合data_std。
- 使用PCA进行降维
使用PCA对数据进行降维的代码非常简单。sklearn库中已经集成了PCA模块,我们只需要在调用PCA类时设置降维后保留的主成分数量即可。例如,下面的代码将数据降到2个主成分:
from sklearn.decomposition import PCA pca = PCA(n_components=2) data_pca = pca.fit_transform(data_std)
其中,data_pca返回的是经过PCA降维处理后的新数据。
- 如何选择降维后的主成分数量
在实际使用PCA进行数据降维时,我们需要选择合适的主成分数量以达到最佳的降维效果。通常情况下,我们可以通过绘制累计方差贡献率图来进行判断。
累计方差贡献率表示前n个主成分的方差之和占总方差的百分比,例如:
import numpy as np pca = PCA() pca.fit(data_std) cum_var_exp = np.cumsum(pca.explained_variance_ratio_)
通过绘制累计方差贡献率图,我们可以观察到主成分数量从1开始逐渐增加时累计方差贡献率的变化趋势,以此来估计合适的主成分数量。代码如下:
import matplotlib.pyplot as plt
plt.bar(range(1, 6), pca.explained_variance_ratio_, alpha=0.5, align='center')
plt.step(range(1, 6), cum_var_exp, where='mid')
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal components')
plt.show()图中的红色线表示累计方差贡献率,x轴代表主成分数量,y轴表示解释的方差比例。可以发现,前两个主成分的方差贡献率已经接近于1,因此选择2个主成分就可以满足大部分分析任务的需求。
- 如何可视化PCA降维后的数据
最后,我们可以使用matplotlib库的scatter函数将PCA降维后的数据进行可视化。例如,下面的代码将数据由原来的4维通过PCA降维到2维,再进行可视化显示:
import matplotlib.pyplot as plt
x = data_pca[:, 0]
y = data_pca[:, 1]
labels = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'pink', 'brown', 'orange']
for i, label in enumerate(np.unique(labels)):
plt.scatter(x[labels == label], y[labels == label], c=colors[i], label=label, alpha=0.7)
plt.legend()
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.show()图中的颜色和标签分别对应于原始数据中的数字标签,通过可视化降维后的数据,我们可以更好地理解数据的结构和特征。
总之,使用PCA主成分分析技术可以帮助我们降低数据的维度,从而更好地理解数据的结构和特征。通过Python的sklearn和matplotlib库,我们可以非常方便地进行PCA算法的实现和可视化分析。
今天关于《Python实现的PCA算法:主成分分析(降维)技巧》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!
介绍Java语言网络架构设计的知识
- 上一篇
- 介绍Java语言网络架构设计的知识
- 下一篇
- 使用 Spring Boot 构建可灵活扩展的企业级应用
-
- 文章 · python教程 | 8小时前 |
- NumPy位异或归约操作全解析
- 259浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python遍历读取所有文件技巧
- 327浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python中index的作用及使用方法
- 358浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Python快速访问嵌套字典键值对
- 340浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Python中ch代表字符的用法解析
- 365浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- NumPy1D近邻查找:向量化优化技巧
- 391浏览 收藏
-
- 文章 · python教程 | 10小时前 | 正则表达式 字符串操作 re模块 Python文本处理 文本清洗
- Python正则表达式实战教程详解
- 392浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- BehaveFixture临时目录管理技巧
- 105浏览 收藏
-
- 文章 · python教程 | 11小时前 | Python 余数 元组 divmod()函数 商
- divmod函数详解与使用技巧
- 442浏览 收藏
-
- 文章 · python教程 | 12小时前 |
- Python多进程共享字符串内存技巧
- 291浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3206次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3419次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3448次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4557次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3826次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

