Python实现的Lasso回归示例
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《Python实现的Lasso回归示例》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
Lasso回归是一种流行应用于机器学习的线性回归方法,目的是通过忽略不相关的特征变量来寻找最佳拟合模型。本文将介绍如何在Python中实现Lasso回归,并提供一个实际的数据集进行演示。
Lasso回归简介
Lasso回归是一种通过向目标函数中添加惩罚项来解决普通最小二乘问题的方法。该惩罚项利用L1正则化(也称为Lasso惩罚)来实现,其形式如下所示:
$J(eta)=rac{1}{2n}sum_{i=1}^{n}(y_i-sum_{j=1}^{p}X_{ij}eta_j)^2 + lpha sum_{j=1}^{p}|eta_j|$
其中,$y$是响应变量,$X$是自变量矩阵,$eta$是模型系数,$n$是样本数,$p$是特征数,$lpha$是惩罚参数。Lasso回归中难解的部分在于惩罚项的非凸优化问题。
实现Lasso回归的一种方法是通过坐标下降(CD)算法来求解。基本思想是在每次迭代中,只改变一个系数。这样,CD算法巧妙地绕过了惩罚项的非凸优化问题。
Python Lasso回归实现
Python提供了许多机器学习库,如Scikit-learn,能够轻松实现Lasso回归。
首先,导入所需的库如下:
import numpy as np import pandas as pd from sklearn.linear_model import LassoCV from sklearn.datasets import load_boston from sklearn.preprocessing import StandardScaler
接下来,我们加载Boston房价数据集并进行标准化处理:
boston = load_boston() X = boston.data y = boston.target X = StandardScaler().fit_transform(X)
然后,我们用Scikit-learn中的LassoCV实现Lasso回归。该模型自动进行交叉验证并选择最优的$lpha$值。
lasso_reg = LassoCV(alphas=np.logspace(-3, 3, 100), cv=5, max_iter=100000) lasso_reg.fit(X, y)
最后,我们输出所得到的最优$lpha$值和模型系数:
print('Best alpha:', lasso_reg.alpha_) print('Model coefficients:', lasso_reg.coef_)
完整代码示例:
import numpy as np import pandas as pd from sklearn.linear_model import LassoCV from sklearn.datasets import load_boston from sklearn.preprocessing import StandardScaler boston = load_boston() X = boston.data y = boston.target X = StandardScaler().fit_transform(X) lasso_reg = LassoCV(alphas=np.logspace(-3, 3, 100), cv=5, max_iter=100000) lasso_reg.fit(X, y) print('Best alpha:', lasso_reg.alpha_) print('Model coefficients:', lasso_reg.coef_)
输出结果如下:
Best alpha: 0.10000000000000002 Model coefficients: [-0.89521162 1.08556604 0.14359222 0.68736347 -2.04113155 2.67946138 0.01939491 -3.08179223 2.63754058 -2.05806301 -2.05202597 0.89812875 -3.73066641]
这表明,通过Lasso回归,我们可以确定对Boston房价预测的最佳模型,并提取与响应变量最相关的特征。
结论
本文介绍了如何在Python中实现Lasso回归,并通过一个实际的数据集演示了该方法的应用。Lasso回归是一种非常有用的线性回归技术,特别适合处理高维数据。在实际问题中,可以通过交叉验证和标准化等技术,优化模型表现,并提取最相关的特征。
本篇关于《Python实现的Lasso回归示例》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

- 上一篇
- 数据加密与解密技术指南:PHP与小程序的实现方法

- 下一篇
- 使用Python通用对象池化库来提高效率的方法
-
- 文章 · python教程 | 50分钟前 |
- Python中*号的多种用法详解
- 376浏览 收藏
-
- 文章 · python教程 | 59分钟前 |
- Python用HDF5实现数据持久化方法
- 330浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python数据清洗:pandas预处理实用技巧
- 494浏览 收藏
-
- 文章 · python教程 | 1小时前 | TypeError 参数不匹配 类型提示 Python函数参数 按对象引用传递
- Python参数调用不匹配检测方法
- 378浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python特征工程与选择技巧全解析
- 470浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python操作Word文档全攻略
- 314浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PythonLambda函数入门指南
- 418浏览 收藏
-
- 文章 · python教程 | 1小时前 | 日志记录 Python脚本 subprocess pythonw.exe 隐藏窗口
- Python运行时隐藏窗口的实用方法
- 480浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 正则提取JSON值方法全解析
- 465浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- super()与实例属性详解Python技巧
- 211浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python卫星图像处理教程:rasterio库使用详解
- 419浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 174次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 173次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 176次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 180次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 193次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览