Python中用于分析残差的技巧
学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《Python中用于分析残差的技巧》,以下内容主要包含等知识点,如果你正在学习或准备学习文章,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!
Python是一种广泛使用的编程语言,其强大的数据分析和可视化功能使其成为数据科学家和机器学习工程师的首选工具之一。在这些应用中,残差分析是一种常见的技术,用于评估模型的准确性和识别任何模型偏差。在本文中,我们将介绍Python中使用残差分析技巧的几种方法。
- 理解残差
在介绍Python中的残差分析技巧之前,让我们先了解什么是残差。在统计学中,残差是实际观测值与预测值之间的差异或误差。在建立任何模型后,我们可以计算每个观测值的残差,这有助于我们评估模型是否可以准确地预测未来的结果。
在Python中,我们可以使用Pandas和NumPy等库来计算残差。参考以下代码:
import pandas as pd import numpy as np # 创建数据集 y_true = pd.Series([1, 2, 3, 4, 5]) y_pred = pd.Series([1.2, 2.1, 2.8, 3.7, 4.5]) # 计算残差 residuals = y_true - y_pred print(residuals)
以上代码创建了两个Pandas Series对象,分别表示真实值和预测值。然后通过相减计算它们的残差,并将其打印出来。
- 残差散点图
残差散点图是一种常用的残差分析工具,用于可视化模型的误差分布。它显示每个观测值的残差值与该观测值的预测值之间的关系。
在Python中,我们可以使用Matplotlib库中的scatter()函数创建散点图。参考以下代码:
import matplotlib.pyplot as plt # 绘制残差散点图 plt.scatter(y_pred, residuals) plt.title('Residual plot') plt.ylabel('Residuals') plt.xlabel('Fitted values') plt.axhline(y=0, color='r', linestyle='-') plt.show()
以上代码使用scatter()函数创建了散点图。横轴表示预测值,纵轴表示残差。其中, axhline()函数用于在图中绘制一条水平线,以帮助我们判断预测值和残差之间的分布是否随机。如果残差值在0附近随机分布,则该模型可以视为是准确的。
- 残差直方图
除了散点图外,残差直方图也是一种有效的残差分析工具,用于评估模型误差分布是否正态分布。在正态分布的情况下,残差值应该随机分布在0附近,因此我们可以使用直方图来显示我们的残差分布情况。
在Python中,我们可以使用Matplotlib库中的hist()函数创建直方图。参考以下代码:
# 绘制残差直方图 plt.hist(residuals, bins=10) plt.title('Residuals distribution') plt.xlabel('Residuals') plt.ylabel('Frequency') plt.show()
以上代码使用hist()函数绘制直方图,并设置了相关的标签和标题。在这里,我们通过设置bins参数来调整横轴的粒度,以便更好地显示残差的分布情况。
- Q-Q图
Q-Q图是一种用于检验我们的残差是否符合正态分布的工具。它通过比较样本数据和标准正态分布之间的分位数来构建。如果残差符合正态分布,则在Q-Q图中,数据点应当在一条直线上。如果数据点偏离该直线,则我们可以认为残差不符合正态分布。
在Python中,我们可以使用Scipy库中的probplot()函数来绘制Q-Q图。参考以下代码:
from scipy.stats import probplot # 绘制Q-Q图 probplot(residuals, dist='norm', plot=plt) plt.title('Q-Q plot') plt.show()
以上代码使用probplot()函数创建Q-Q图,并设置了dist参数为'norm',表示使用标准正态分布作为比较基准。如果数据点偏离直线,则我们可以通过检查绘制的图形来确认残差是否符合正态分布。
总结
在这篇文章中,我们介绍了Python中的残差分析技巧,并介绍了几种主要的工具,如残差散点图、残差直方图和Q-Q图。这些技术通常用于评估模型的准确性和识别模型偏差。熟练掌握这些技术可以帮助我们更好地理解和分析数据,并为我们的机器学习模型提供更好的改进和调整建议。
本篇关于《Python中用于分析残差的技巧》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

- 上一篇
- 处理Java中的XML和JSON的方法

- 下一篇
- 利用PHP开发的二手回收网站消息通知中心
-
- 文章 · python教程 | 49分钟前 |
- Python提速IO:Parquet优化技巧分享
- 287浏览 收藏
-
- 文章 · python教程 | 1小时前 | 异常处理 参数传递 Python脚本调用 subprocess.run os.system
- Python脚本嵌套调用技巧全解析
- 437浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- attrs与cattrs处理嵌套列表的技巧分享
- 282浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Pandas筛选含A不包含B的字符串方法
- 209浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PyCharm中文设置方法及步骤详解
- 166浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python导入numpy的快捷方式
- 145浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python机器学习算法详解
- 144浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python多进程数据库并发控制方法
- 358浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python制作数据透视表全攻略
- 201浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pandas快速提取单列数据技巧
- 265浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python边缘检测教程:OpenCV实现全解析
- 492浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 202次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 205次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 202次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 208次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 225次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览