实用的Python推荐系统示例
大家好,今天本人给大家带来文章《实用的Python推荐系统示例》,文中内容主要涉及到,如果你对文章方面的知识点感兴趣,那就请各位朋友继续看下去吧~希望能真正帮到你们,谢谢!
Python是目前非常流行的编程语言,其强大的库系统和易于学习的语法使其成为开发各种应用的首选。在机器学习领域,Python也是一种常用的编程语言。本文将介绍使用Python构建推荐系统的实例。
推荐系统是指根据用户的历史行为、兴趣等信息,为用户推荐商品、内容或服务的算法和应用程序。推荐系统应用广泛,例如电子商务、社交媒体、新闻阅读等领域。Python提供了一些库和框架,可以用于构建推荐系统。
一、推荐系统的类型
推荐系统主要分为两种类型:基于内容的推荐和协同过滤推荐。
基于内容的推荐是根据用户过去的兴趣爱好和商品的属性特征,推荐相似的商品。这种方法需要对商品的特征进行分析,可以使用文本处理库NLTK或Scikit-learn来处理商品属性的文本信息,例如商品的标题、描述等。
协同过滤推荐是根据用户的行为历史数据,发现用户之间的关系,向用户推荐他们可能感兴趣的商品。协同过滤推荐有两种主要方法:基于用户的协同过滤和基于物品的协同过滤。
基于用户的协同过滤是根据用户之间的相似度进行推荐,即找到和当前用户兴趣相似的其他用户,并根据这些用户喜欢的商品向当前用户推荐商品。这种方法需要计算用户之间的相似度,可以使用Scikit-learn中的cosine_similarity计算余弦相似度。
基于物品的协同过滤是根据商品之间的相似度进行推荐,即找到当前用户喜欢的商品的相似商品,并向当前用户推荐这些相似商品。这种方法需要计算商品之间的相似度,可以使用Scikit-learn中的pairwise_distances计算欧几里德距离或余弦距离。
二、推荐系统的实例
接下来,我们将介绍使用Python构建基于物品的协同过滤推荐系统的实例。
首先,我们需要准备数据。我们选取一个电影评分数据集,该数据集包含电影ID、用户ID和评分等信息。我们可以使用Pandas库来读取和处理数据。下面是代码示例:
import pandas as pd ratings_data = pd.read_csv('ratings.csv') movies_data = pd.read_csv('movies.csv')
接下来,我们需要将数据进行预处理,提取出需要用到的信息。我们需要将电影ID映射为电影名称,将用户ID映射为标号。下面是代码示例:
# 将电影ID映射为电影名称 movie_names = {} for index, row in movies_data.iterrows(): movie_names[row['movieId']] = row['title'] # 将用户ID映射为标号 user_ids = {} user_counter = 0 for index, row in ratings_data.iterrows(): user_id = row['userId'] if user_id not in user_ids: user_ids[user_id] = user_counter user_counter += 1
然后,我们需要构建电影评分矩阵,矩阵的行表示用户,列表示电影,矩阵中的每个元素表示用户对电影的评分。矩阵中有一些缺失值,表示对应的电影没有被用户评分。我们需要使用填充方法填充这些缺失值。下面是代码示例:
import numpy as np n_users = len(user_ids) n_movies = max(movie_names.keys()) rating_matrix = np.zeros((n_users, n_movies)) for index, row in ratings_data.iterrows(): user_id = row['userId'] movie_id = row['movieId'] rating = row['rating'] rating_matrix[user_ids[user_id], movie_id] = rating # 使用均值填充缺失值 mean_ratings = np.zeros((n_users,)) for i in range(n_users): ratings = rating_matrix[i, :] ratings = ratings[ratings > 0] mean_ratings[i] = ratings.mean() rating_matrix[i, ratings == 0] = mean_ratings[i]
然后,我们需要计算电影之间的相似度矩阵,可以使用Scikit-learn中的pairwise_distances函数计算欧几里德距离或余弦距离。这里我们选择余弦距离。下面是代码示例:
from sklearn.metrics.pairwise import pairwise_distances movie_similarity = 1 - pairwise_distances(rating_matrix.T, metric='cosine')
最后,我们需要向用户推荐电影。我们可以根据用户最喜欢的电影,选择与之相似的电影进行推荐。下面是代码示例:
# 找到用户最喜欢的电影 user_id = 0 user_ratings = rating_matrix[user_id, :] fav_movie = np.argmax(user_ratings) print('用户 %d 最喜欢的电影是 %s' % (user_id, movie_names[fav_movie])) # 根据相似度找到相似的电影 similar_movies = movie_similarity[fav_movie, :] top_k = 5 top_k_movies = np.argsort(similar_movies)[::-1][:top_k] for i, movie_id in enumerate(top_k_movies): print('Top %d 推荐电影是 %s' % (i+1, movie_names[movie_id]))
以上就是基于物品的协同过滤推荐系统的Python实例。
总结
推荐系统是一种应用广泛的机器学习应用程序,Python提供了丰富的库和框架,可以帮助开发者快速构建推荐系统。本文介绍了如何使用Python构建基于物品的协同过滤推荐系统的实例,希望能对读者有所帮助。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。

- 上一篇
- IoC和AOP在Java编程中的实际应用

- 下一篇
- 在Vue应用中实施安全日志记录和监测
-
- 文章 · python教程 | 10分钟前 | docker 容器 镜像 Python版本 Dockerfile
- Docker查看Python版本的几种方法
- 219浏览 收藏
-
- 文章 · python教程 | 13分钟前 |
- Pythonstrip函数实用技巧分享
- 193浏览 收藏
-
- 文章 · python教程 | 33分钟前 |
- Python全局变量定义详解
- 270浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python类型提示与静态检查技巧
- 482浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python爬虫教程:Scrapy框架全解析
- 494浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Matplotlib如何修改单个数据点颜色
- 276浏览 收藏
-
- 文章 · python教程 | 2小时前 | Python 函数
- Python函数定义与调用详解
- 410浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python装饰器入门与实战详解
- 238浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python实现主成分分析方法详解
- 380浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python批量发邮件技巧详解
- 488浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Pythonwhile循环教程与使用详解
- 140浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 514次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 230次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 198次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 234次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 194次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 222次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览