当前位置:首页 > 文章列表 > 文章 > python教程 > 深入解析Python中的FP-Growth算法

深入解析Python中的FP-Growth算法

2024-01-21 21:48:22 0浏览 收藏

本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《深入解析Python中的FP-Growth算法》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~

FP-Growth算法是一种经典的频繁模式挖掘算法,它是一种非常高效的算法,用于从数据集中挖掘经常出现在一起的物品集合。这篇文章将为你详细介绍FP-Growth算法的原理和实现方法。

一、FP-Growth算法基本原理

FP-Growth算法的基本思想是建立一棵FP-Tree(频繁项集树)来表示数据集中的频繁项集,并从FP-Tree中挖掘频繁项集。FP-Tree是一个高效的数据结构,它可以在不生成候选频繁项集的情况下,进行频繁项集的挖掘。

FP-Tree包含两个部分:根节点和树节点。根节点没有值,而树节点包括一个项的名称和项出现的次数。FP-Tree还包括指向相同节点的链接,这些链接称为“链接指针”。

FP-Growth算法的流程包括构建FP-Tree和挖掘频繁项集两个部分:

  1. 构建FP-Tree:

对于每个事务,删除非频繁项,并按照频繁项的支持度大小排序,得到一个频繁项集。

遍历每个事务,对于每个事务的频繁项集,按照出现的顺序插入到FP-Tree中,如果节点已存在,则增加其计数,如果不存在,则插入新的节点。

  1. 挖掘频繁项集:

从FP-Tree中挖掘频繁项集的方法包括:

从FP-Tree的最底部开始,找到每个项集的条件模式库,条件模式库包含所有包含该项集的事务。然后,对该条件模式库递归地构建一棵新的FP-Tree,并寻找该树中的频繁项集。

在新的FP-Tree中,对每个频繁项按照支持度排序,构建候选项的集合,并递归地进行挖掘。重复上述过程,直到找到所有的频繁项集。

二、FP-Growth算法的实现

FP-Growth算法的实现可以使用Python编程语言。下面是一个简单的例子,用于演示FP-Growth算法的实现。

首先,定义一个数据集,例如:

dataset = [['v', 'a', 'p', 'e', 's'],
           ['b', 'a', 'k', 'e'],
           ['a', 'p', 'p', 'l', 'e', 's'],
           ['d', 'i', 'n', 'n', 'e', 'r']]

然后,编写一个函数来生成有序项集,例如:

def create_ordered_items(dataset):
    # 遍历数据集,统计每个项出现的次数
    item_dict = {}
    for trans in dataset:
        for item in trans:
            if item not in item_dict:
                item_dict[item] = 1
            else:
                item_dict[item] += 1

    # 生成有序项集
    ordered_items = [v[0] for v in sorted(item_dict.items(), key=lambda x: x[1], reverse=True)]
    return ordered_items

其中,create_ordered_items函数用于按照项的出现次数获取有序项集。

接下来,编写一个函数来构建FP-Tree:

class TreeNode:
    def __init__(self, name, count, parent):
        self.name = name
        self.count = count
        self.parent = parent
        self.children = {}
        self.node_link = None

    def increase_count(self, count):
        self.count += count

def create_tree(dataset, min_support):
    # 生成有序项集
    ordered_items = create_ordered_items(dataset)

    # 建立根节点
    root_node = TreeNode('Null Set', 0, None)

    # 建立FP-Tree
    head_table = {}
    for trans in dataset:
        # 过滤非频繁项
        filtered_items = [item for item in trans if item in ordered_items]
        # 对每个事务中的项集按频繁项的支持度从大到小排序
        filtered_items.sort(key=lambda x: ordered_items.index(x))
        # 插入到FP-Tree中
        insert_tree(filtered_items, root_node, head_table)

    return root_node, head_table

def insert_tree(items, node, head_table):
    if items[0] in node.children:
        # 如果节点已存在,则增加其计数
        node.children[items[0]].increase_count(1)
    else:
        # 如果节点不存在,则插入新的节点
        new_node = TreeNode(items[0], 1, node)
        node.children[items[0]] = new_node
        # 更新链表中的指针
        if head_table.get(items[0], None) is None:
            head_table[items[0]] = new_node
        else:
            current_node = head_table[items[0]]
            while current_node.node_link is not None:
                current_node = current_node.node_link
            current_node.node_link = new_node

    if len(items) > 1:
        # 对剩余的项进行插入
        insert_tree(items[1:], node.children[items[0]], head_table)

create_tree函数用于构建FP-Tree。

最后,编写一个函数来挖掘频繁项集:

def find_freq_items(head_table, prefix, freq_items, min_support):
    # 对头指针表中的每个项按照出现的次数从小到大排序
    sorted_items = [v[0] for v in sorted(head_table.items(), key=lambda x: x[1].count)]
    for item in sorted_items:
        # 将前缀加上该项,得到新的频繁项
        freq_set = prefix + [item]
        freq_count = head_table[item].count
        freq_items.append((freq_set, freq_count))
        # 构建该项的条件模式库
        cond_pat_base = get_cond_pat_base(head_table[item])
        # 递归地构建新的FP-Tree,并寻找频繁项集
        sub_head_table, sub_freq_items = create_tree(cond_pat_base, min_support)
        if sub_head_table is not None:
            find_freq_items(sub_head_table, freq_set, freq_items, min_support)

def get_cond_pat_base(tree_node):
    cond_pat_base = []
    while tree_node is not None:
        trans = []
        curr = tree_node.parent
        while curr.parent is not None:
            trans.append(curr.name)
            curr = curr.parent
        cond_pat_base.append(trans)
        tree_node = tree_node.node_link
    return cond_pat_base

def mine_fp_tree(dataset, min_support):
    freq_items = []
    # 构建FP-Tree
    root_node, head_table = create_tree(dataset, min_support)
    # 挖掘频繁项集
    find_freq_items(head_table, [], freq_items, min_support)
    return freq_items

mine_fp_tree函数用于挖掘频繁项集。

三、总结

FP-Growth算法是一种高效的频繁模式挖掘算法,通过构建FP-Tree,可以在不生成候选频繁项集的情况下,进行频繁项集的挖掘。Python是一种非常适合实现FP-Growth算法的编程语言,通过使用Python,我们可以快速实现这个算法,并在实践中使用它来挖掘频繁项集。希望这篇文章可以帮助你更好地理解FP-Growth算法的原理和实现方法。

今天关于《深入解析Python中的FP-Growth算法》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

PHP错误处理实践总结PHP错误处理实践总结
上一篇
PHP错误处理实践总结
实现Java语言线程同步和互斥的方法
下一篇
实现Java语言线程同步和互斥的方法
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    20次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    36次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    39次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    45次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    44次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码