pandas读取txt文件的快速入门指南
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《pandas读取txt文件的快速入门指南》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
Pandas是一个数据处理库,可以用来读取、操作和分析数据。在本文中,我们将介绍如何使用Pandas读取txt文件。这篇文章的目标读者是那些想要学习Pandas的初学者。
- 导入Pandas库
首先,在Python中导入Pandas库。
import pandas as pd
- 读取txt文件
在读取txt文件之前我们需要先了解一下txt文件的一些常见参数:
- delimiter:分隔符
- header:是否有表头
- names:如果没有表头,则可以手动指定列名
- index_col:设置某一列为索引列,默认不设置
- skiprows:跳过前面的行数
- sep:指定分隔符
示例:假设我们有一个文件名为"data.txt"。首先,我们需要使用read_table()函数读取txt文件。read_table()提供了一种非常灵活的读取文本数据的方式。
data = pd.read_table('data.txt', delimiter=',', header=0)
- 查看读取的数据
可以使用.head()
函数查看读取的前几行数据。默认显示前5行数据。
print(data.head())
- 数据清洗
在读取数据之后,我们要对其进行必要的清洗和转换。这通常包括删除无用的列,删除缺失值,重命名列名,转换数据类型等。以下是一些常见的数据清洗方法。
- 删除无用的列:
data = data.drop(columns=['ID'])
- 删除缺失值:
data.dropna(inplace=True)
- 重命名列名:
data = data.rename(columns={'OldName': 'NewName'})
- 转换数据类型:
data['ColumnName'] = data['ColumnName'].astype(str) data['ColumnName'] = data['ColumnName'].astype(int)
- 数据分析
在数据清洗之后,我们可以开始进行数据分析。Pandas提供了丰富的方法来处理数据。
例如,为了计算某一列的总和:
total = data['ColumnName'].sum() print(total)
在Pandas中,可以使用groupby()函数对数据进行分组。例如,假设我们要通过名字对数据进行分组,并计算分组后的平均值:
grouped_data = data.groupby(['Name']).mean() print(grouped_data.head())
- 数据可视化
最后,通过数据可视化,我们可以更加清晰地理解数据中的趋势和模式。
import matplotlib.pyplot as plt plt.bar(data['ColumnName'], data['Count']) plt.xlabel('ColumnName') plt.ylabel('Count') plt.title('ColumnName vs Count') plt.show()
综上所述,Pandas提供了一种方便快捷的方法来读取、清洗和分析数据。通过这篇文章,读者可以学会如何使用Pandas读取txt文件,以及如何进行数据清洗、分析和可视化。
到这里,我们也就讲完了《pandas读取txt文件的快速入门指南》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于读取,Pandas,txt文件的知识点!

- 上一篇
- 深入了解Django:Python中的Web应用框架

- 下一篇
- 电脑中的cookie数据在哪个文件夹?详细解读
-
- 文章 · python教程 | 7小时前 | Python SpeechRecognition 实时语音转文字 pyaudio 语音识别API
- Python语音转文字教程:SpeechRecognition库使用详解
- 199浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python发邮件带附件教程详解
- 315浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python图像处理:Pillow库高级用法解析
- 192浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python协程怎么实现?
- 175浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python正则匹配浮点数的写法大全
- 383浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python数据标准化方法及sklearn应用
- 464浏览 收藏
-
- 文章 · python教程 | 9小时前 | 异常处理 命令行参数 跨平台兼容 Python脚本调用 subprocess.run()
- Python脚本嵌套调用技巧全解析
- 414浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python读取DICOM医疗数据全攻略
- 441浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- PyCharm英文界面设置教程
- 372浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 218次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 217次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 215次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 219次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 240次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览