当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 上海交大团队推出数据驱动的主动学习框架,助力碳纳米材料研究

上海交大团队推出数据驱动的主动学习框架,助力碳纳米材料研究

来源:机器之心 2024-01-31 16:37:25 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《上海交大团队推出数据驱动的主动学习框架,助力碳纳米材料研究》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

助力碳纳米材料研究,上海交大团队开发数据驱动的主动学习框架

编辑 | X

控制碳纳米材料合成,如单晶、石墨烯、手性碳纳米管,是其在电子和能源领域应用的主要挑战。

虽然基底催化生长为碳纳米结构的可控合成被认为是前途光明的方法,但是目前仍然存在动态催化表面生长机制和设计策略的挑战,需要进一步的研究和发展。

近期,上海交通大学和日本东北大学的研究团队展示了主动机器学习模型在揭示基底催化生长微观过程中的有效性。通过分子动力学和蒙特卡罗方法的协同应用,他们成功地对Cu(111)上石墨烯的生长进行了全面动态模拟。为了增强模拟的准确性,研究团队采用了高斯近似势。这项研究为深入理解催化生长过程提供了新的工具和方法。

通过该研究,我们得出了一种实用而有效的方法,可用于设计金属或合金衬底以获得所需的碳纳米结构,并探索更多的反应可能性。

该研究以《Active machine learning model for the dynamic simulation and growth mechanisms of carbon on metal surface》为题,于 2024 年 1 月 6 日,发布在《Nature Communications》上。

助力碳纳米材料研究,上海交大团队开发数据驱动的主动学习框架

论文链接:https://www.nature.com/articles/s41467-023-44525-z

当前金属基底催化研究的局限性

基底催化沉积被认为是实现二维或三维碳原子共价键网络可控生长的最有前途的方法之一。虽然普通表面上的生长机制已被广泛研究,但关于控制高指数或复合表面上石墨烯质量的动态和原子级因素的知识有限。这一研究差距极大地阻碍了理论指导设计方法在碳纳米结构生长中的新型催化金属衬底的发展。

由于潜在基底的广泛范围以及碳纳米材料生长过程对各种实验参数的敏感性,通过实验寻找金属或合金催化剂有相当大的挑战。

因此,理论模拟有足够的空间,许多原子细节很容易获得。比如 DFT、动力学蒙特卡罗 (KMC) 和从头算分子动力学 (AIMD) 等。然而,这些方法各有其局限性。因此,仍然迫切需要一种能够准确描述金属表面碳生长机制的稳健设计模型。

基于人工神经网络或基于核方法的机器学习势(MLP)被认为是解决经典力场有限的精度和可转移性并保持 DFT 级精度的有效方法。尽管在数据驱动的 MD 模拟方面取得了重大成就,但构建精确的 MLP 仍然是一项艰巨的任务。这个问题的一个解决方案是动态学习技术。

为了提高沉积过程的动态训练的效率和有效性,需要一个明确定义的选择协议。另一方面,金属基底上碳生长的动力学可以由重要的罕见事件控制。因此,如何通过将增强采样方法与经典动力学相结合来提高 MLP 的训练效率还需要进一步研究。

数据驱动的自动学习框架,以最少的人力生成 MLP

该研究提出了一种数据驱动的自动学习框架,以最少的人力生成 MLP,其适合于金属或合金表面的碳生长。

为了实现这一任务,研究人员利用 (1) 高斯近似势 (GAP) 加工学习模型;(2)一种增强采样方法,称为时间戳力偏置蒙特卡罗(time-stamped force-biased Monte Carlo,tfMC)方法,以加速碳沉积后的弛豫过程,从而将重要的稀有事件包含在训练数据库中;(3)基于原子位置平滑重叠(SOAP)描述符选择代表性训练数据的有效策略;(4) 完善的碳训练集;(5)自动化筛选、拟合和验证程序。

助力碳纳米材料研究,上海交大团队开发数据驱动的主动学习框架

图 1:在混合分 MD/tfMC 模拟过程中,通过动态主动学习产生的碳在金属上生长机器学习势 (CGM-MLP)的示意图。(来源:论文)

通过利用金属上碳生长机器学习势 (CGM-MLP) 的高精度并在 MD/tfMC 方法中纳入罕见的原子事件,成功地复制了与金属表面石墨烯成核和碳生长相关的基本子过程(subprocesses),如下图所示。

助力碳纳米材料研究,上海交大团队开发数据驱动的主动学习框架

图 2:CGM-MLP 驱动模拟具有不同碳入射动能 (Ek) 的 Cu(111) 上的石墨烯生长。(来源:论文)

然后应用产生的电势来研究碳原子在 Cu (111) 表面上的沉积生长。这种方法可以正确捕获 Cu(111)上碳生长的关键过程,如亚表面碳单体和表面二聚体的形成和迁移,一维碳纳米微晶的出现,石墨烯成核涉及 Cu 原子和碳链的边缘钝化,以及析出生长过程。

助力碳纳米材料研究,上海交大团队开发数据驱动的主动学习框架

图 3:碳结构分析和高能轰击碳环断裂的观察。(来源:论文)

助力碳纳米材料研究,上海交大团队开发数据驱动的主动学习框架

图 4:使用金属上 CGM-MLP 和基于 DFT 的爬行图像微动弹性带 (CI-NEB) 计算获得碳扩散和石墨烯成核的最小能量路径。(来源:论文)

研究人员对不同金属表面的初始成核,特别是 Cu(111)、Cr(110)、Ti(001) 和 O 污染的 Cu(111) 上的碳沉积的模拟,与实验观察和 DFT 计算表现出一致性。

助力碳纳米材料研究,上海交大团队开发数据驱动的主动学习框架

图 5:用于碳纳米结构生长的代表性金属表面。(来源:论文)

研究意义

总之,该研究代表了 MLP 和 MD/tfMC 集成方面的开创性进展,为设计金属或合金基材以获得所需的碳纳米结构提供了可转移且有效的策略。

CGM-MLP 有效地将第一原理方法的准确性与经典力场的效率结合起来。tfMC 方法克服了传统 AIMD 或经典 MD 方法的时间尺度限制。此外,CGM-MLP 的自动训练框架纳入了专门的查询策略,用于在沉积模拟中构建动态训练集,强调了考虑沉积原子周围局部环境的重要性。

这些进展使得复杂金属表面碳生长机制的直接理论研究成为可能。该研究中提出的机器学习驱动的沉积模型可能为研究多种碳纳米结构(例如石墨烯、碳纳米管、石墨或类金刚石碳膜)生长中的多元素金属或合金基底提供机会。

今天关于《上海交大团队推出数据驱动的主动学习框架,助力碳纳米材料研究》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于神经网络,理论,MLP,碳纳米材料的内容请关注golang学习网公众号!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
mac上使用虚拟机运行saimac上使用虚拟机运行sai
上一篇
mac上使用虚拟机运行sai
敲电子木鱼、遛AI助理、个性化铃声海报,钉钉7.5版本讨好年轻人
下一篇
敲电子木鱼、遛AI助理、个性化铃声海报,钉钉7.5版本讨好年轻人
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    23次使用
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    33次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    30次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    34次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码