当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Pytorch的九个关键操作!!

Pytorch的九个关键操作!!

来源:51CTO.COM 2023-12-31 16:26:44 0浏览 收藏

哈喽!今天心血来潮给大家带来了《Pytorch的九个关键操作!!》,想必大家应该对科技周边都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习科技周边,千万别错过这篇文章~希望能帮助到你!

今天我们来聊一聊关于PyTorch的内容,我总结了九个最重要的PyTorch操作,这将给你提供一个整体的概念。

九大Pytorch最重要操作!!

张量创建和基本操作

PyTorch的张量类似于NumPy数组,不过它们具备GPU加速和自动求导的功能。我们可以使用torch.tensor函数来创建张量,也可以使用torch.zeros、torch.ones等函数来创建。这些函数能够帮助我们更方便地创建张量。

import torch# 创建张量a = torch.tensor([1, 2, 3])b = torch.tensor([4, 5, 6])# 张量加法c = a + bprint(c)

自动求导(Autograd)

torch.autograd模块提供了自动求导的机制,允许记录操作以及计算梯度。

x = torch.tensor([1.0], requires_grad=True)y = x**2y.backward()print(x.grad)

神经网络层(nn.Module)

torch.nn.Module是构建神经网络的基本组件,它可以包含各种层,例如线性层(nn.Linear)、卷积层(nn.Conv2d)等。

import torch.nn as nnclass SimpleNN(nn.Module):def __init__(self): super(SimpleNN, self).__init__() self.fc = nn.Linear(10, 5)def forward(self, x): return self.fc(x)model = SimpleNN()

优化器(Optimizer)

优化器用于调整模型参数以减小损失函数。以下是一个使用随机梯度下降(SGD)优化器的例子。

import torch.optim as optimoptimizer = optim.SGD(model.parameters(), lr=0.01)

损失函数(Loss Function)

损失函数用于衡量模型输出与目标之间的差距。例如,交叉熵损失适用于分类问题。

loss_function = nn.CrossEntropyLoss()

数据加载与预处理

PyTorch的torch.utils.data模块提供了Dataset和DataLoader类,用于加载和预处理数据。可以自定义数据集类来适应不同的数据格式和任务。

from torch.utils.data import DataLoader, Datasetclass CustomDataset(Dataset):# 实现数据集的初始化和__getitem__方法dataloader = DataLoader(dataset, batch_size=64, shuffle=True)

模型保存与加载

可以使用torch.save保存模型的状态字典,并使用torch.load加载模型。

# 保存模型torch.save(model.state_dict(), 'model.pth')# 加载模型loaded_model = SimpleNN()loaded_model.load_state_dict(torch.load('model.pth'))

学习率调整

torch.optim.lr_scheduler模块提供了学习率调整的工具。例如,可以使用StepLR来在每个epoch之后降低学习率。

from torch.optim import lr_schedulerscheduler = lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

模型评估

在模型训练完成后,需要评估模型性能。在评估时,需要将模型切换到评估模式(model.eval())并使用torch.no_grad()上下文管理器来避免梯度计算。

model.eval()with torch.no_grad():# 运行模型并计算性能指标

到这里,我们也就讲完了《Pytorch的九个关键操作!!》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于框架,PyTorch的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
全球轻型车配备L2+ADAS技术预计在2023年达到200万辆,并在2024年翻倍至450万辆全球轻型车配备L2+ADAS技术预计在2023年达到200万辆,并在2024年翻倍至450万辆
上一篇
全球轻型车配备L2+ADAS技术预计在2023年达到200万辆,并在2024年翻倍至450万辆
GitHub开放编程聊天机器人给所有用户,网友高度赞叹:颠覆者的出现
下一篇
GitHub开放编程聊天机器人给所有用户,网友高度赞叹:颠覆者的出现
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    108次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    100次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    120次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    112次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    117次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码