异步协程开发实战:优化大文件上传与下载的速度
知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个文章开发实战,手把手教大家学习《异步协程开发实战:优化大文件上传与下载的速度》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!
异步协程开发实战:优化大文件上传与下载的速度
随着互联网的发展和普及,文件的传输已成为常态。但当传输的文件变得越来越大时,传统的文件上传、下载方式会遇到很多困难。为了优化大文件的传输速度,提高用户体验,我们可以通过异步协程来实现。本文将分享如何使用异步协程技术来优化大文件的上传和下载速度,并提供具体代码示例。
一、异步协程技术简介
异步协程本质上是一种编程模型。它的特点是在发生阻塞时,能够立即释放当前线程的控制权,将控制权交给其他任务继续执行,等到阻塞结束之后再返回执行,从而实现对多个任务之间的切换,以达到更高效的处理效果。
常见的异步协程技术包括Python中的asyncio、Node.js中的Callback和Promise等。不同的语言和技术可能有不同的实现方式,但本质上都是为了更好地利用计算机资源来提高并发和处理效率。
二、优化大文件上传的速度
- 使用分块上传
大文件上传时,将整个文件一次性传输到服务器上必然会导致网络阻塞和传输速度慢的问题。为了避免这个问题,可以将大文件分成多块进行上传,每一块都是独立的数据包,可以并行上传,从而加快上传速度。
使用异步协程技术可以很方便地实现分块上传,并行传输多个块数据,实现更高效的上传操作。下面是具体的代码实现。
import aiohttp import asyncio async def upload_chunk(session, url, file, offset, size): headers = {'Content-Length': str(size), 'Content-Range': f'bytes {offset}-{offset+size-1}/{file_size}'} data = file.read(size) async with session.put(url, headers=headers, data=data) as resp: return await resp.json() async def upload_file_with_chunks(session, url, file): file_size = os.path.getsize(file.name) chunk_size = 1024 * 1024 * 5 #每块数据的大小为5MB offset = 0 tasks = [] while offset < file_size: size = chunk_size if offset+chunk_size < file_size else file_size-offset tasks.append(upload_chunk(session, url, file, offset, size)) offset += size return await asyncio.gather(*tasks) async def main(): async with aiohttp.ClientSession() as session: url = 'http://example.com/upload' file = open('large_file.mp4', 'rb') result = await upload_file_with_chunks(session, url, file) print(result) asyncio.run(main())
在这段代码中,我们把整个文件分成了大小为5MB的数据块,然后使用asyncio.gather()
方法将上传各个数据块的任务并发执行,以加快上传速度。分块上传的思路也同样适用于文件下载,具体请看下一节内容。
- 多线程上传
除了使用分块上传,还可以使用多线程的方式来实现大文件的上传操作。使用多线程可以更充分地利用计算机的多核资源,从而加速文件上传的速度。下面是具体的代码实现。
import threading import requests class MultiPartUpload(object): def __init__(self, url, file_path, num_thread=4): self.url = url self.file_path = file_path self.num_thread = num_thread self.file_size = os.path.getsize(self.file_path) self.chunk_size = self.file_size//num_thread self.threads = [] self.lock = threading.Lock() def upload(self, i): start = i * self.chunk_size end = start + self.chunk_size - 1 headers = {"Content-Range": "bytes %s-%s/%s" % (start, end, self.file_size), "Content-Length": str(self.chunk_size)} data = open(self.file_path, 'rb') data.seek(start) resp = requests.put(self.url, headers=headers, data=data.read(self.chunk_size)) self.lock.acquire() print("Part %d status: %s" % (i, resp.status_code)) self.lock.release() def run(self): for i in range(self.num_thread): t = threading.Thread(target=self.upload, args=(i,)) self.threads.append(t) for t in self.threads: t.start() for t in self.threads: t.join() if __name__ == '__main__': url = 'http://example.com/upload' file = 'large_file.mp4' uploader = MultiPartUpload(url, file) uploader.run()
在这段代码中,我们使用了Python标准库中的threading
模块来实现多线程上传。将整个文件分成多个数据块,每个线程负责上传其中的一块,从而实现并发上传。使用锁机制来保护并发上传过程中的线程安全。
三、优化大文件下载的速度
除了上传,下载大文件同样是一个很常见的需求,同样可以通过异步协程来实现优化。
- 分块下载
和分块上传类似,分块下载将整个文件划分成若干块,每一块独立下载,并行传输多个块数据,从而加快下载速度。具体的代码实现如下:
import aiohttp import asyncio import os async def download_chunk(session, url, file, offset, size): headers = {'Range': f'bytes={offset}-{offset+size-1}'} async with session.get(url, headers=headers) as resp: data = await resp.read() file.seek(offset) file.write(data) return len(data) async def download_file_with_chunks(session, url, file): async with session.head(url) as resp: file_size = int(resp.headers.get('Content-Length')) chunk_size = 1024 * 1024 * 5 #每块数据的大小为5MB offset = 0 tasks = [] while offset < file_size: size = chunk_size if offset+chunk_size < file_size else file_size-offset tasks.append(download_chunk(session, url, file, offset, size)) offset += size return await asyncio.gather(*tasks) async def main(): async with aiohttp.ClientSession() as session: url = 'http://example.com/download/large_file.mp4' file = open('large_file.mp4', 'wb+') await download_file_with_chunks(session, url, file) asyncio.run(main())
在这段代码中,我们使用了aiohttp
库来进行异步协程的并行下载。同样地,将整个文件分成大小为5MB的数据块,然后使用asyncio.gather()
方法将下载各个数据块的任务并发执行,加快文件下载速度。
- 多线程下载
除了分块下载,还可以使用多线程下载的方式来实现大文件的下载操作。具体的代码实现如下:
import threading import requests class MultiPartDownload(object): def __init__(self, url, file_path, num_thread=4): self.url = url self.file_path = file_path self.num_thread = num_thread self.file_size = requests.get(self.url, stream=True).headers.get('Content-Length') self.chunk_size = int(self.file_size) // self.num_thread self.threads = [] self.lock = threading.Lock() def download(self, i): start = i * self.chunk_size end = start + self.chunk_size - 1 if i != self.num_thread - 1 else '' headers = {"Range": "bytes=%s-%s" % (start, end)} data = requests.get(self.url, headers=headers, stream=True) with open(self.file_path, 'rb+') as f: f.seek(start) f.write(data.content) self.lock.acquire() print("Part %d Downloaded." % i) self.lock.release() def run(self): for i in range(self.num_thread): t = threading.Thread(target=self.download, args=(i,)) self.threads.append(t) for t in self.threads: t.start() for t in self.threads: t.join() if __name__ == '__main__': url = 'http://example.com/download/large_file.mp4' file = 'large_file.mp4' downloader = MultiPartDownload(url, file) downloader.run()
在这段代码中,我们同样使用了Python标准库中的threading
模块来实现多线程下载。将整个文件分成多个数据块,每个线程负责下载其中的一块,从而实现并发下载。同样使用锁机制来保护并发下载过程中的线程安全。
四、总结
本文介绍了如何使用异步协程技术来优化大文件的上传和下载速度。通过对上传、下载操作中的分块和并行处理,可以很快地提高文件传输的效率。无论是在异步协程、多线程、分布式系统等领域,都有广泛的应用。希望这篇文章对你有所帮助!
本篇关于《异步协程开发实战:优化大文件上传与下载的速度》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

- 上一篇
- 学会使用ECharts和golang打造独特的统计图表教程

- 下一篇
- Go语言中如何实现路由的反向代理
-
- 文章 · php教程 | 9分钟前 | 引用 for循环 foreach array_walk array_map
- PHP数组遍历替换元素技巧
- 340浏览 收藏
-
- 文章 · php教程 | 56分钟前 |
- PHP数组按日期排序的小技巧
- 221浏览 收藏
-
- 文章 · php教程 | 1小时前 | mysql 日志 增量备份 mysqldump mysqlbinlog
- PHP数据备份恢复的实用技巧
- 171浏览 收藏
-
- 文章 · php教程 | 1小时前 |
- PHP去除字符串空格的实用技巧
- 370浏览 收藏
-
- 文章 · php教程 | 2小时前 | 可变参数 性能影响 动态调用 插件系统 call_user_func_array
- PHP中call_user_func_array函数的用法及示例
- 147浏览 收藏
-
- 文章 · php教程 | 2小时前 |
- PHP中if语句使用及示例详解
- 187浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 27次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 25次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 24次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 27次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 41次使用
-
- PHP技术的高薪回报与发展前景
- 2023-10-08 501浏览
-
- 基于 PHP 的商场优惠券系统开发中的常见问题解决方案
- 2023-10-05 501浏览
-
- 如何使用PHP开发简单的在线支付功能
- 2023-09-27 501浏览
-
- PHP消息队列开发指南:实现分布式缓存刷新器
- 2023-09-30 501浏览
-
- 如何在PHP微服务中实现分布式任务分配和调度
- 2023-10-04 501浏览