如何使用WebSocket和JavaScript实现在线人脸识别系统
“纵有疾风来,人生不言弃”,这句话送给正在学习文章的朋友们,也希望在阅读本文《如何使用WebSocket和JavaScript实现在线人脸识别系统》后,能够真的帮助到大家。我也会在后续的文章中,陆续更新文章相关的技术文章,有好的建议欢迎大家在评论留言,非常感谢!
受限于人类天生的视觉处理能力,人的视觉识别系统在许多方面无法与计算机相比,例如,人的脑力不足以在短时间内识别出大量的人脸。然而,在计算机如今的高级技术中,面部识别技术已经日益成熟化。利用计算机视觉和人工智能的结合,我们能够开发出多种面部识别技术,其中最重要的一种是在线人脸识别系统。本文旨在介绍如何利用WebSocket和JavaScript来实现一个在线人脸识别系统。
首先需要理解WebSocket是什么。WebSocket是一种基于TCP协议的网络通信协议。它提供了浏览器和服务器之间的持久性连接,实现了双向通信。在本文中,我们将使用WebSocket来将图像和识别信息从客户端发送到服务器,并将识别结果从服务器发送回客户端。
第一步是创建一个WebSocket连接。在客户端中,通过以下代码片段创建一个WebSocket连接:
let socket = new WebSocket("ws://localhost:8080/"); socket.onopen = function() { console.log("WebSocket连接已打开"); }; socket.onmessage = function(event) { console.log(event.data); };
这将在本地主机上打开一个WebSocket连接,连接到8080端口。当WebSocket连接打开时,将输出日志“WebSocket连接已打开”。当接收到来自服务器的消息时,将在控制台中输出消息数据。
现在需要实现客户端将图像信息发送到服务器的功能。有多种方法可用于捕获图像,其中包括HTML5中的“
let video = document.querySelector('video'); navigator.mediaDevices.getUserMedia({video: true}) .then(function (stream) { video.srcObject = stream; });
现在可以使用HTML5 Canvas API将捕获的图像绘制到一个
let canvas = document.getElementById('canvas'); let context = canvas.getContext('2d'); context.drawImage(video, 0, 0, canvas.width, canvas.height);
可以将图像数据作为Base64字符串提取出来,然后通过WebSocket发送给服务器:
let dataUrl = canvas.toDataURL('image/jpeg', 1.0); socket.send(dataUrl);
服务器将使用OpenCV和Python将接收到的图像进行处理和识别。以下是一个简单的Python脚本,使用OpenCV将人脸从图像中剪切出来:
import cv2 def detect_faces(image): face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) return faces def extract_faces(image_path): image = cv2.imread(image_path) faces = detect_faces(image) for i, (x, y, w, h) in enumerate(faces): face_image = image[y:y+h, x:x+w] cv2.imwrite('face_{}.jpg'.format(i), face_image)
可以看到,这个脚本使用了OpenCV中的人脸检测器来检测图像中的人脸,并将人脸剪切出来保存到“face_{}.jpg”的文件中。
在服务器端,可以使用Python编写以下WebSocket程序。
import asyncio import cv2 import base64 import io from aiohttp import web async def index(request): return web.Response(text="WebSocket服务器已启动!") async def websocket_handler(request): ws = web.WebSocketResponse() await ws.prepare(request) while True: data = await ws.receive() if data.type == web.WSMsgType.TEXT: await ws.send_str("接收到了一张新的图像,请稍候……") img_data = data.data[23:] # 截取“data:image/jpeg;base64,”之后的数据 try: img_bytes = base64.b64decode(img_data) img_stream = io.BytesIO(img_bytes) img_np = cv2.imdecode(np.frombuffer(img_stream.read(), np.uint8), cv2.IMREAD_UNCHANGED) # 图像识别代码 # ... # 向客户端发送识别结果 await ws.send_str("这是一个人脸。") except: await ws.send_str("出错了,无法处理该图像。") elif data.type == web.WSMsgType.ERROR: print("WebSocket连接发生错误! Code:{}".format(ws.exception())) break return ws app = web.Application() app.router.add_get('/', index) app.router.add_get('/ws', websocket_handler) # /ws是WebSocket路径,亦可为其他路径 web.run_app(app, port=8080)
当WebSocket连接打开时,将自动运行websocket_handler函数,并持续监听来自客户端的消息。当接收到一张新的图像时,将解析Base64编码并使用OpenCV处理。数据处理后,将结果返回给客户端。
至此,我们已经成功地实现了一个在线人脸识别系统。完整的客户端和服务器端代码如下所示:
客户端:
<html> <head> <meta charset="UTF-8"> <title>人脸识别</title> </head> <body> <h1>人脸识别</h1> <video width="320" height="240" autoplay></video> <canvas id="canvas" width="320" height="240"></canvas> <script> let socket = new WebSocket("ws://localhost:8080/"); socket.onopen = function() { console.log("WebSocket连接已打开"); }; socket.onmessage = function(event) { console.log(event.data); }; let video = document.querySelector('video'); navigator.mediaDevices.getUserMedia({video: true}) .then(function (stream) { video.srcObject = stream; }); let canvas = document.getElementById('canvas'); let context = canvas.getContext('2d'); setInterval(function() { context.drawImage(video, 0, 0, canvas.width, canvas.height); let dataUrl = canvas.toDataURL('image/jpeg', 1.0); socket.send(dataUrl); }, 500); </script> </body> </html>
服务器端:
import asyncio import cv2 import base64 import io from aiohttp import web async def index(request): return web.Response(text="WebSocket服务器已启动!") async def websocket_handler(request): ws = web.WebSocketResponse() await ws.prepare(request) while True: data = await ws.receive() if data.type == web.WSMsgType.TEXT: await ws.send_str("接收到了一张新的图像,请稍候……") img_data = data.data[23:] # 截取“data:image/jpeg;base64,”之后的数据 try: img_bytes = base64.b64decode(img_data) img_stream = io.BytesIO(img_bytes) img_np = cv2.imdecode(np.frombuffer(img_stream.read(), np.uint8), cv2.IMREAD_UNCHANGED) # 图像识别代码 # ... # 向客户端发送识别结果 await ws.send_str("这是一个人脸。") except: await ws.send_str("出错了,无法处理该图像。") elif data.type == web.WSMsgType.ERROR: print("WebSocket连接发生错误! Code:{}".format(ws.exception())) break return ws app = web.Application() app.router.add_get('/', index) app.router.add_get('/ws', websocket_handler) web.run_app(app, port=8080)
希望这篇文章能够帮助您了解如何使用WebSocket和JavaScript实现一个在线人脸识别系统,并快速搭建出一个可行性系统。
终于介绍完啦!小伙伴们,这篇关于《如何使用WebSocket和JavaScript实现在线人脸识别系统》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

- 上一篇
- uniapp中如何实现页面的后退功能

- 下一篇
- 如何使用PHP和WebSocket打造即时通讯系统
-
- 文章 · 前端 | 7小时前 | 安全 JSON解析 校验 注入攻击 JSON.parse()
- JS安全解析JSON的3种方法
- 427浏览 收藏
-
- 文章 · 前端 | 7小时前 | CSS过渡 requestAnimationFrame 缓动函数 transition属性 颜色过渡
- CSS颜色平滑过渡技巧教学
- 168浏览 收藏
-
- 文章 · 前端 | 7小时前 |
- JS如何缓存接口数据方法解析
- 137浏览 收藏
-
- 文章 · 前端 | 7小时前 | 文本溢出 white-space word-break word-wrap CSS文本换行
- CSS文本换行控制全攻略
- 305浏览 收藏
-
- 文章 · 前端 | 7小时前 |
- p标签在CSS中指的是段落元素,用于定义文本段落。
- 382浏览 收藏
-
- 文章 · 前端 | 7小时前 |
- HTML中标签的使用与SEO优化
- 267浏览 收藏
-
- 文章 · 前端 | 7小时前 | html CSS JavaScript 锚点链接 返回顶部按钮
- 返回顶部按钮实现方法及代码示例
- 301浏览 收藏
-
- 文章 · 前端 | 7小时前 |
- JS判断字符串含子串的几种方法
- 377浏览 收藏
-
- 文章 · 前端 | 7小时前 | 字符集 密码强度 WebCryptoAPI 随机密码 单词列表
- JS生成3种高强度随机密码方法
- 108浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 104次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 112次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 122次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 113次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 111次使用
-
- 优化用户界面体验的秘密武器:CSS开发项目经验大揭秘
- 2023-11-03 501浏览
-
- 使用微信小程序实现图片轮播特效
- 2023-11-21 501浏览
-
- 解析sessionStorage的存储能力与限制
- 2024-01-11 501浏览
-
- 探索冒泡活动对于团队合作的推动力
- 2024-01-13 501浏览
-
- UI设计中为何选择绝对定位的智慧之道
- 2024-02-03 501浏览