当前位置:首页 > 文章列表 > 文章 > 前端 > 如何使用WebSocket和JavaScript实现在线人脸识别系统

如何使用WebSocket和JavaScript实现在线人脸识别系统

2023-12-17 22:32:08 0浏览 收藏

“纵有疾风来,人生不言弃”,这句话送给正在学习文章的朋友们,也希望在阅读本文《如何使用WebSocket和JavaScript实现在线人脸识别系统》后,能够真的帮助到大家。我也会在后续的文章中,陆续更新文章相关的技术文章,有好的建议欢迎大家在评论留言,非常感谢!

受限于人类天生的视觉处理能力,人的视觉识别系统在许多方面无法与计算机相比,例如,人的脑力不足以在短时间内识别出大量的人脸。然而,在计算机如今的高级技术中,面部识别技术已经日益成熟化。利用计算机视觉和人工智能的结合,我们能够开发出多种面部识别技术,其中最重要的一种是在线人脸识别系统。本文旨在介绍如何利用WebSocket和JavaScript来实现一个在线人脸识别系统。

首先需要理解WebSocket是什么。WebSocket是一种基于TCP协议的网络通信协议。它提供了浏览器和服务器之间的持久性连接,实现了双向通信。在本文中,我们将使用WebSocket来将图像和识别信息从客户端发送到服务器,并将识别结果从服务器发送回客户端。

第一步是创建一个WebSocket连接。在客户端中,通过以下代码片段创建一个WebSocket连接:

let socket = new WebSocket("ws://localhost:8080/");
socket.onopen = function() {
   console.log("WebSocket连接已打开");
};
socket.onmessage = function(event) {
   console.log(event.data);
};

这将在本地主机上打开一个WebSocket连接,连接到8080端口。当WebSocket连接打开时,将输出日志“WebSocket连接已打开”。当接收到来自服务器的消息时,将在控制台中输出消息数据。

现在需要实现客户端将图像信息发送到服务器的功能。有多种方法可用于捕获图像,其中包括HTML5中的“”元素和“getUserMedia”API。使用“getUserMedia”API捕获摄像头数据是最简单的方法之一:

let video = document.querySelector('video');
navigator.mediaDevices.getUserMedia({video: true})
  .then(function (stream) {
    video.srcObject = stream;
  });

现在可以使用HTML5 Canvas API将捕获的图像绘制到一个元素中:

let canvas = document.getElementById('canvas');
let context = canvas.getContext('2d');
context.drawImage(video, 0, 0, canvas.width, canvas.height);

可以将图像数据作为Base64字符串提取出来,然后通过WebSocket发送给服务器:

let dataUrl = canvas.toDataURL('image/jpeg', 1.0);
socket.send(dataUrl);

服务器将使用OpenCV和Python将接收到的图像进行处理和识别。以下是一个简单的Python脚本,使用OpenCV将人脸从图像中剪切出来:

import cv2

def detect_faces(image):
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    return faces

def extract_faces(image_path):
    image = cv2.imread(image_path)
    faces = detect_faces(image)
    for i, (x, y, w, h) in enumerate(faces):
        face_image = image[y:y+h, x:x+w]
        cv2.imwrite('face_{}.jpg'.format(i), face_image)

可以看到,这个脚本使用了OpenCV中的人脸检测器来检测图像中的人脸,并将人脸剪切出来保存到“face_{}.jpg”的文件中。

在服务器端,可以使用Python编写以下WebSocket程序。

import asyncio
import cv2
import base64
import io

from aiohttp import web

async def index(request):
    return web.Response(text="WebSocket服务器已启动!")

async def websocket_handler(request):
    ws = web.WebSocketResponse()
    await ws.prepare(request)
    
    while True:
        data = await ws.receive()
        if data.type == web.WSMsgType.TEXT:
            await ws.send_str("接收到了一张新的图像,请稍候……")
            img_data = data.data[23:]  # 截取“data:image/jpeg;base64,”之后的数据
            try:
                img_bytes = base64.b64decode(img_data)
                img_stream = io.BytesIO(img_bytes)
                img_np = cv2.imdecode(np.frombuffer(img_stream.read(), np.uint8), cv2.IMREAD_UNCHANGED)
                
                # 图像识别代码
                # ...
                
                # 向客户端发送识别结果
                await ws.send_str("这是一个人脸。")
            except:
                await ws.send_str("出错了,无法处理该图像。")

        elif data.type == web.WSMsgType.ERROR:
            print("WebSocket连接发生错误! Code:{}".format(ws.exception()))
            break

    return ws

app = web.Application()
app.router.add_get('/', index)
app.router.add_get('/ws', websocket_handler)  # /ws是WebSocket路径,亦可为其他路径
web.run_app(app, port=8080)

当WebSocket连接打开时,将自动运行websocket_handler函数,并持续监听来自客户端的消息。当接收到一张新的图像时,将解析Base64编码并使用OpenCV处理。数据处理后,将结果返回给客户端。

至此,我们已经成功地实现了一个在线人脸识别系统。完整的客户端和服务器端代码如下所示:

客户端:



    
    人脸识别


    

人脸识别

服务器端:

import asyncio
import cv2
import base64
import io

from aiohttp import web

async def index(request):
    return web.Response(text="WebSocket服务器已启动!")

async def websocket_handler(request):
    ws = web.WebSocketResponse()
    await ws.prepare(request)
    
    while True:
        data = await ws.receive()
        if data.type == web.WSMsgType.TEXT:
            await ws.send_str("接收到了一张新的图像,请稍候……")
            img_data = data.data[23:]  # 截取“data:image/jpeg;base64,”之后的数据
            try:
                img_bytes = base64.b64decode(img_data)
                img_stream = io.BytesIO(img_bytes)
                img_np = cv2.imdecode(np.frombuffer(img_stream.read(), np.uint8), cv2.IMREAD_UNCHANGED)
                
                # 图像识别代码
                # ...
                
                # 向客户端发送识别结果
                await ws.send_str("这是一个人脸。")
            except:
                await ws.send_str("出错了,无法处理该图像。")

        elif data.type == web.WSMsgType.ERROR:
            print("WebSocket连接发生错误! Code:{}".format(ws.exception()))
            break

    return ws

app = web.Application()
app.router.add_get('/', index)
app.router.add_get('/ws', websocket_handler)
web.run_app(app, port=8080)

希望这篇文章能够帮助您了解如何使用WebSocket和JavaScript实现一个在线人脸识别系统,并快速搭建出一个可行性系统。

终于介绍完啦!小伙伴们,这篇关于《如何使用WebSocket和JavaScript实现在线人脸识别系统》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

uniapp中如何实现页面的后退功能uniapp中如何实现页面的后退功能
上一篇
uniapp中如何实现页面的后退功能
如何使用PHP和WebSocket打造即时通讯系统
下一篇
如何使用PHP和WebSocket打造即时通讯系统
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    23次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    35次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    37次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    46次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    40次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码