当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验

LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验

来源:机器之心 2023-12-16 10:45:43 0浏览 收藏

知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个科技周边开发实战,手把手教大家学习《LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!

最近,来自 Waabi AI、多伦多大学、滑铁卢大学和麻省理工的研究者们在 NeurIPS 2023 上提出了一种全新的自动驾驶光照仿真平台 LightSim。研究者们提出了从真实数据中生成配对的光照训练数据的方法,解决了数据缺失和模型迁移损失的问题。LightSim 利用神经辐射场(NeRF)和基于物理的深度网络渲染车辆驾驶视频,首次在大规模真实数据上实现了动态场景的光照仿真。LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验

LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验

  • 项目网站:https://waabi.ai/lightsim
  • 论文链接:https://openreview.net/pdf?id=mcx8IGneYw

为什么需要自动驾驶光照仿真?

相机仿真在机器人技术中,尤其对于自动驾驶车辆感知室外的场景非常重要。然而,现有的相机的感知系统一旦遇到训练时未学习过的室外照明条件,就表现欠佳。通过相机模拟生成丰富的室外照明变化数据集,可以提高自动驾驶系统的鲁棒性。

常见的相机仿真方法一般基于物理引擎。这种方法通过设定 3D 模型和照明条件来渲染场景。但往往仿真效果缺乏多样性且不够逼真。此外,由于高质量的 3D 模型数量有限,并且物理渲染结果与真实世界场景不完全匹配。这导致训练模型在真实数据上的泛化能力较差。

另一种是基于数据驱动的(data-driven)仿真方法。它利用神经渲染重构真实世界的数字孪生(digital twins),以复制传感器观测到的数据。这种方法可以更具扩展性地创建场景并提高现实感,但现有技术往往将场景照明烘焙(bake)到 3D 模型中,这阻碍了对数字孪生进行编辑,如改变照明条件或增删新的物体等。

在 NeurIPS 2023 的一篇工作中,来自 Waabi AI 的研究者们展示了一个基于物理引擎和神经网络的光照仿真系统 LightSim: Neural Lighting Simulation for Urban Scenes.

LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验

不同于以往工作,LightSim 同时做到了:

1. 真实(realistic): 首次做到对大规模室外动态场景进行光照仿真,并且可以较为准确地模拟阴影、物体间的光照效果等。
2. 可控(controllable):支持动态驾驶场景的编辑(增添、删除物体、相机位置和参数、改变光照、生成安全关键场景等),从而生成更逼真且一致性更强的视频来提升系统对于光照和边缘情况的鲁棒性。
3. 可扩展 (scalable): 方便扩展到更多的场景和不同数据集中,只需要采集一次数据(single pass), 就能重新建构并进行真实可控的仿真测试。

LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验

仿真系统的搭建

第一步:构建真实世界的可重新照明数字孪生体

为了在数字世界中重建自动驾驶场景,LightSim 首先从采集的数据中划分动态物体和静态场景。这一步使用了 UniSim 来重建场景,并在网络中移除了相机视角依赖。再使用 marching cube 得到 geometry, 并进一步转换为带有基本材料的 mesh。
LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验
除了材料和几何,LightSim 还能够根据室外白天场景的主要光源太阳和天空,估算室外照明,得到高动态范围的环境图(HDR Sky dome)。借助传感器数据和提取的几何体,LightSim 可以估算出一个不完整的全景图像,然后补全它,获得一个全方位 360° 的天空视图。从而利用这个全景图像和 GPS 信息生成 HDR 环境图,准确估算出太阳强度、太阳方向和天空外观。

LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验

第二步:动态城市场景的神经照明仿真

在得到数字孪生体后,可以进一步对其进行修改,例如增加或移除物体,改变车辆轨迹或更改照明等,以生成增强现实的表征。LightSim 将执行基于物理的渲染,生成有关修改场景的照明相关数据,如基本色彩、深度、法向量和阴影。利用这些与照明相关的数据以及对场景源和目标照明条件的估算,LightSim 的工作流程如下所示。

LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验

虽然基于物理的渲染图像很好地重构了场景中的照明效果,但由于几何形状的不完美以及材料 / 照明分解中的误差,渲染结果往往缺乏真实感,例如模糊、不真实的表面反射和边界伪影。因此,研究者们提出了增强真实感的神经延迟渲染。他们引入了一个图像合成网络,该网络采用源图像和渲染引擎生成的照明相关数据的预计算缓冲区,生成最终的图像。同时,论文中的方法还为网络提供了环境图,以增强照明上下文,并通过数字孪生体生成了成对图像,提供了一种新颖的成对仿真和真实数据训练方案。

仿真能力展示

改变场景的光照 (Scene Relighting)

LightSim 可以在新的光照条件下以时间一致的方式渲染同一场景。如视频所示,新的太阳位置和天空外观会导致场景的阴影和外观发生变化。LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验LightSim 可以批量地进行场景重新照明,从估计的和真实的 HDR 环境图中生成同一场景的新的时间一致的和可 3D 感知的照明变化。 LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验
阴影编辑 (Shadow Editing)

LightSim 的照明表示是可编辑的,可以改变太阳的方向,从而更新与太阳光方向相关的照明变化和阴影。LightSim 通过旋转 HDR 环境图并将其传递给神经延迟渲染模块以生成以下视频。LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验LightSim 也可以批量地进行阴影编辑。 LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验
可感知光照的物体添加 (Lighting-Aware Actor Insertion)

除了修改照明之外,LightSim 还可以对不常见的对象(例如建筑障碍物)执行照明感知的添加。这些添加的对象可以更新物体的照明阴影、做到准确遮挡物体以及与整个相机配置的空间适配。LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验
仿真迁移 (Generalization to nuScenes)

由于 LightSim 的神经延迟渲染网络是在多个驾驶视频上进行训练的,因此 LightSim 可以推广到新场景中。以下视频展示了 LightSim 泛化到 nuScenes 中的驾驶场景的能力。LightSim 可以为每个场景构建照明感知数字孪生,然后应用于在 PandaSet 上预训练的神经延迟渲染模型。LightSim 迁移性能良好,并且可以较为鲁棒地为场景重新照明。LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验
真实可控的相机仿真

综合以上展示的所有功能,LightSim 实现了可控、多样化且逼真的相机模拟。以下视频展示了 LightSim 的场景仿真性能。在视频中,一辆白色的车紧急变道至 SDV 车道,引入了新的路障,这使得白色车辆进入了产生一个全新的场景,在新场景的多种照明条件下 LightSim 生成的效果如下所示。LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验以下视频中展示了另一个实例,插入了新的道路障碍后,又添加了一组新的车辆。使用 LightSim 搭建的仿真光照,让新加入的车辆能够无缝地融入到场景中。 LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验
总结和展望

LightSim 是一个可感知光照的相机仿真平台,为处理大规模动态驾驶场景服务。它可以根据现实世界的数据构建可感知照明的数字孪生体,并对其进行修改,以创建具有不同物体布局、SDV 视角的新场景。LightSim 能够对场景模拟新的照明条件以实现多样化、真实且可控的相机仿真,从而生成时间 / 空间一致的视频。值得注意的是,LightSim 还可以结合逆向渲染、天气模拟等技术来进一步提升仿真性能。

终于介绍完啦!小伙伴们,这篇关于《LightSim:NeurIPS 2023推出的自动驾驶光照仿真平台,实现真实、可控和可拓展的模拟体验》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
小鹏X9:AI智能新星,2024年1月1日登场小鹏X9:AI智能新星,2024年1月1日登场
上一篇
小鹏X9:AI智能新星,2024年1月1日登场
数智上海 2023 峰会重磅来袭,百余位大咖齐聚,共论智能创新赋能产业数字化转型
下一篇
数智上海 2023 峰会重磅来袭,百余位大咖齐聚,共论智能创新赋能产业数字化转型
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    12次使用
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    26次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    23次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    26次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    27次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码