一文总结特征增强&个性化在CTR预估中的经典方法和效果对比
最近发现不少小伙伴都对科技周边很感兴趣,所以今天继续给大家介绍科技周边相关的知识,本文《一文总结特征增强&个性化在CTR预估中的经典方法和效果对比》主要内容涉及到等等知识点,希望能帮到你!当然如果阅读本文时存在不同想法,可以在评论中表达,但是请勿使用过激的措辞~
在CTR预估中,主流都采用特征embedding+MLP的方式,其中特征非常关键。然而对于相同的特征,在不同的样本中,表征是相同的,这种方式输入到下游模型,会限制模型的表达能力。
为了解决这个问题,CTR预估领域提出了一系列相关工作,被称为特征增强模块。特征增强模块根据不同的样本,对embedding层的输出结果进行一次矫正,以适应不同样本的特征表示,提升模型的表达能力。
最近,复旦大学和微软亚洲研究院合作发布了一篇关于特征增强工作的综述,对比了不同特征增强模块的实现方法及其效果。现在,我们来介绍一下几种特征增强模块的实现方法,以及本文所进行的相关对比实验
论文标题:A Comprehensive Summarization and Evaluation of Feature Refinement Modules for CTR Prediction
下载地址:https://arxiv.org/pdf/2311.04625v1.pdf
1、特征增强建模思路
特征增强模块,旨在提升CTR预估模型中Embedding层的表达能力,实现相同特征在不同样本下的表征差异化。特征增强模块可以用下面这个统一公式表达,输入原始的Embedding,经过一个函数后,生成这个样本个性化的Embedding。
图片
这类方法的大致思路为,在得到初始的每个特征的embedding后,使用样本本身的表征,对特征embedding做一个变换,得到当前样本的个性化embedding。下面给大家介绍一些经典的特征增强模块建模方法。
2、特征增强经典方法
An Input-aware Factorization Machine for Sparse Prediction(IJCAI 2019)这篇文章在embedding层之后增加了一个reweight层,将样本初始embedding输入到一个MLP中得到一个表征样本的向量,使用softmax进行归一化。Softmax后的每个元素对应一个特征,代表这个特征的重要程度,使用这个softmax结果和每个对应特征的初始embedding相乘,实现样本粒度的特征embedding加权。
图片
FiBiNET: 结合特征重要性和二阶特征交互的点击率预测模型(RecSys 2019)也采用了类似的思路。该模型为每个样本学习了一个特征的个性化权重。整个过程分为挤压(squeeze)、提取(extraction)和重新加权(reweight)三个步骤。在挤压阶段,通过池化方法将每个特征的嵌入向量得到一个统计标量。在提取阶段,将这些标量输入到多层感知机(MLP)中,得到每个特征的权重。最后,将这些权重与每个特征的嵌入向量相乘,得到加权后的嵌入结果,相当于在样本级别上进行特征重要性的筛选
图片
A Dual Input-aware Factorization Machine for CTR Prediction(IJCAI 2020)和上一篇文章类似,也是利用self-attention对特征进行一层增强。整体分为vector-wise和bit-wise两个模块。Vector-wise将每个特征的embedding当成序列中的一个元素,输入到Transformer中得到融合后的特征表示;bit-wise部分使用多层MLP对原始特征进行映射。两部分的输入结果相加后,得到每个特征元素的权重,乘到对应的原始特征的每一位上,得到增强后的特征。
图片
GateNet:增强门控深度网络用于点击率预测(2020)利用每个特征的初始嵌入向量通过一个MLP和sigmoid函数生成其独立的特征权重分数,同时使用MLP将所有特征映射为按位的权重分数,将两者结合起来对输入特征进行加权。除了特征层外,在MLP的隐藏层中,也利用类似的方法对每个隐藏层的输入进行加权
图片
Interpretable Click-Through Rate Prediction through Hierarchical Attention(WSDM 2020)也是利用self-attention实现特征的转换,但是增加了高阶特征的生成。这里面使用层次self-attention,每一层的self-attention以上一层sefl-attention的输出作为输入,每一层增加了一阶高阶特征组合,实现层次多阶特征提取。具体来说,每一层进行self-attention后,将生成的新特征矩阵经过softmax得到每个特征的权重,根据权重对原始特征加权新的特征,再和原始特征进行一次点积,实现增加一阶的特征交叉。
图片
ContextNet: A Click-Through Rate Prediction Framework Using Contextual information to Refine Feature Embedding(2021)也是类似的做法,使用一个MLP将所有特征映射成一个每个特征embedding尺寸的维度,对原始特征做一个缩放,文中针对每个特征使用了个性化的MLP参数。通过这种方式,利用样本中的其他特征作为上下位增强每个特征。
图片
Enhancing CTR Prediction with Context-Aware Feature Representation Learning(SIGIR 2022)采用了self-attention进行特征增强,对于一组输入特征,每个特征对于其他特征的影响程度是不同的,通过self-attention,对每个特征的embedding进行一次self-attention,实现样本内特征间的信息交互。除了特征间的交互,文中也利用MLP进行bit级别的信息交互。上述生成的新embedding,会通过一个gate网络,和原始的embedding进行融合,得到最终refine后的特征表示。
图片
3、实验效果
进行了各类特征增强方法的效果对比后,得出整体结论:在众多特征增强模块中,GFRL、FRNet-V、FRNetB表现最优,且效果优于其他特征增强方法
图片
好了,本文到此结束,带大家了解了《一文总结特征增强&个性化在CTR预估中的经典方法和效果对比》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

- 上一篇
- 新标题:AAAI2024:Far3D - 创新的直接干到150m视觉3D目标检测思路

- 下一篇
- 用时 19.87 秒,“飞狗”HOUND 刷新机器狗百米最快纪录
-
- 科技周边 · 人工智能 | 17分钟前 |
- DeepSeek-R1T-Chimera:TNG开源语言模型深度解析
- 280浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- ACE-Step与阶跃星辰联手发布开源音乐模型
- 446浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 零跑CTC电池提前一年达标新国标
- 307浏览 收藏
-
- 科技周边 · 人工智能 | 7小时前 |
- 字节跳动Seed-Thinking-v1.5思考模型重磅发布
- 471浏览 收藏
-
- 科技周边 · 人工智能 | 20小时前 |
- 阿里开源实时数字人对话—OpenAvatarChat
- 419浏览 收藏
-
- 科技周边 · 人工智能 | 20小时前 |
- 宝马加速推出全球限量M车型,瞄准中日市场
- 477浏览 收藏
-
- 科技周边 · 人工智能 | 20小时前 | 新能源汽车 国产化 第三代半导体 SiC车规级功率半导体 扬杰科技
- 扬杰科技10亿元SiC车规级模块封装项目开工
- 296浏览 收藏
-
- 科技周边 · 人工智能 | 20小时前 |
- 保时捷911Turbo测试车曝光混动马力或破700匹
- 483浏览 收藏
-
- 科技周边 · 人工智能 | 21小时前 | QD-OLED 量子点技术 QD-LCD MiniLED MacBookPro
- 2024年量子点薄膜和扩散板收入猛增42%
- 197浏览 收藏
-
- 科技周边 · 人工智能 | 22小时前 |
- 沃尔沃电动卡车销量破5000,特斯拉Semi量产难
- 334浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 14次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 14次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 17次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 19次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 32次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览