AI大模型驶向产业之海,需要高质数据“河道”引航
小伙伴们对科技周边编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《AI大模型驶向产业之海,需要高质数据“河道”引航》,就很适合你,本篇文章讲解的知识点主要包括。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!
在某次行业峰会上,一位来自清华大学的院士科学家透露,我们的AI大模型是在万卡集群上进行训练的,每三小时就会出现一次错误。虽然听起来有点可笑,但这已经达到了世界先进水平
风靡全球的AI大模型,是今年毋庸置疑的风口,数量不断增长,达到了惊人的水平。“百舸争流”之下,大家却经常会忽略一个关键问题:AI大模型带来的数据激流,也比想象中更加汹涌。
“三小时出错一次”,听起来不可思议的故障率,却是大模型从业者要面对的常态,甚至是“优等生”。目前业界的普遍做法,是写容错检查点checkpoint。既然三小时就报错,那就2.5小时停一次,写好检查点,把数据存起来,再开始训练。一旦出现故障,可以从写好的检查点恢复,避免“从头开始”、全部白干。而检查点需要存储的数据多,会耗费大量的时间。该院士团队基于llama 2架构研发的大模型,数据存一次硬件,就需要十个小时,存储效率直接影响了开发进度。
如果说大规模的异构数据,是肆意奔涌的激流,存储系统就是承载着数据流量的河道,其宽阔坚固程度直接决定了数据是否会淤塞甚至停滞,从而卡住AI大模型的生命线。可以说,整个大模型行业的生产力和效率,都被存储规定了“上限”。
这也是为什么,存储作为AI数据基础设施,受到越来越多关注。
11月29日,“数智创新 AI未来”2023中国数据与存储峰会在北京举办。曙光存储发布了面向AI大模型的存储解决方案。
借此机会,我们一起了解一下,AI大模型浪潮来袭,给存储带来的承载挑战,以及曙光存储是如何为智能产业引航,助推AI大模型百舸扬帆。
AI大模型正在进入产业的深水区,传统存储方式面临着数据的挑战
最近我去了一趟云南,发现不仅北上广等科技重地的大模型建设如火如荼,在昆明、大理等二三线城市,甚至边疆地区,都在积极地探索大模型行业应用。
各行各业走向智能化,几乎都点燃了对大模型的炽热兴趣。这时候,一个关键问题也显露了出来:AI大模型的产业化风潮,需要升级存储基础设施。
模型开发者的每一次训练,数据都在向存储系统发起多种挑战:
- 数据洪潮的冲击。随着大模型的产业落地,许多行业都开始训练专属模型,大量行业数据、专有数据、新的标注数据被输送给大模型,澎湃的数据数量对存储系统提出了挑战。云南某数据科技公司提到,行业大模型要用高质量的数据集、文档、客户私有数据进行训练,每个项目都是单独成立标注组,数据规模持续增大,存储诉求和成本也随之增加。
2.数据淤塞的桎梏。超大规模数据预处理的速度慢、耗时长,采集、归类、搬迁等过程费时费力,一旦存储性能跟不上,海量文件吞吐慢、多读少写,检查点Checkpoint等待耗时久,会延缓开发进度,增加开发成本。
3.数据复杂的暗涌。此外,AI大模型要用到大量异构数据,文件格式复杂、数据集类型多样,数据数量激增,传统存储难以应对数据复杂性的挑战,容易产生消化不良的问题,造成数据访问效率低,从而造成模型运行效率下降,训练算力消耗增多,无法充分“压榨”昂贵的GPU算力资源。比如云南当地的太阳观测站,通过让AI科学计算模型学习海量图片,呈现太阳真实的样子,每天产生2TB的图片数据,当前存储的吞吐效率低,会导致训练集加载慢、数据处理周期长,拖慢研究进程。
4. 数据安全的隐忧。目前,AI大模型已经深度渗透各行业之中,在训练开发及应用落地过程中需要海量的数据支撑,其中包含行业或个人敏感信息的数据,如果没有合理的数据脱敏和数据托管机制,则可能造成数据泄露,给行业和个人造成损失。同时,模型安全风险也需重视,比如,插件可能被植入有害内容,成为不法分子欺诈和“投毒”的工具,危及社会和产业安全。
AI大模型驶向产业深水区,令人欣喜的是,这项技术创新正在深度融入各行各业,满足智能化需求,生机勃勃。然而,也存在一些担忧,数据工程在大模型的整个生命周期中起着重要作用,包括数据收集、清理、训练、推理部署和反馈调优等各个阶段,都需要大量的数据。然而,存储问题成为一个瓶颈,这意味着AI大模型在各个阶段都可能面临数据堵塞、故障和效率低下的情况,这将导致大模型的开发周期和综合成本非常高,超出产业的承受能力
为了避免数据淤塞,支持和培养大型模型的产业发展,我们需要对存储“河道”进行疏浚。曙光存储提供了一种新的解决方案,这为我们发现了有价值的参考案例
高质数据“航道”,曙光存储给大模型行业一个答案
经过与AI大模型开发者的交流,我得出了一个明确的结论:构建一个适配AI大模型的全新存储体系,已经不再需要讨论,关键是谁能先完成方案升级、提供实用的解决方案
洞察行业的存力需求,曙光存储打造了以ParaStor大模型专用存储为底座的AI大模型存储解决方案,写下了自己的答案。
曙光存储AI大模型存储集群,拥有异构融合、极致性能与原生安全三大领先能力。
首先,我们可以提供千亿级的文件存储服务,它的扩展规模接近于无限。我们还特别解决了数据访问协议多样性的问题,同时支持文件、对象等多种存储协议,以避免在不同存储系统之间复制数据的情况
其次,针对AI大模型开发过程中对数据处理效率的高需求,曙光存储AI大模型存储集群可提供多级缓存加速、XDS数据加速及智能高速选路等多种数据IO性能优化能力。
为了确保全流程数据的安全,曙光存储节点提供了芯片级安全能力,并支持国密指令集。通过多级可靠性,它可以保证存储集群在训练和开发的整个周期内稳定运行,符合政策和未来的安全趋势
有人可能会问了,市面上的存储方案这么多,有的也宣传为模型开发提供专业支持。曙光存储的方案有哪些差异化价值?
如果对各家的技术名词和产品细节云里雾里,大家不妨用几个词,记住曙光存储AI大模型存储集群的差异化价值:
1.先进。异构融合,极致性能,芯片级原生安全,展现了曙光存储的技术先进性,也针对性地解决了大模型开发的数据量大、数据形态复杂多样、吞吐效率低、存算时间长等实实在在的痛点。
2.可靠。高性能AI数据基础设施基于曙光存储的自研创新,更加可靠安全,符合信创政策和未来安全趋势,可以帮助国内大模型服务商规避海外供应链风险,从供应链安全、数据安全、模型安全等多个角度,为大模型产业的发展护航。
3.全面。曙光存储打造了涵盖从网络、计算到平台的全维度AI解决方案,支持训练开发全周期内稳定运行,可以降低综合成本,让大模型开发者和行业客户无忧前行。
总结一下,在曙光存储构建的高质“航道”上,大规模数据高效吞吐,AI大模型加速开发,因此,行业和企业可以快人一步,将大模型与垂直场景和业务深度融合,率先获得通往智能时代的船票。
第五范式的新起点,观察着众多企业竞相前进、蓬勃发展的景象
图灵奖获得者吉姆·格雷(Jim Gray),曾提出第四范式,核心是数据驱动。而随着大语言模型“智能涌现”,“智能驱动”的第五范式,更侧重于数据和智能的有机结合,成为支撑科学革命、产业革命的新底层逻辑。
一切过去的事情都是序章。人工智能如此,存储也如此
此次大会上,凭借20年行业深耕,与在AI存储技术突破、液冷存储研发等领域的领先实践,曙光存储公司总裁惠润海获评“存储先锋”。在其领导下,多年来曙光分布式文件存储在市场中持续领跑,市场份额名列前茅。面向AI大模型的数据存储解决方案,让曙光存储又一次站到了时代前沿。
曙光存储的AI大模型存储集群,正在积极实践范式转换,以适应新的数据范式,通过数据基础设施的突破,推动大模型产业化的蓬勃发展
接下来,在存储行业的新范式、新起点,在曙光存储的高质数据“河道”上,我们会看到,行业大模型百舸争流,AI应用千帆竞渡,加速驶向智能中国。
文中关于产业布局,数据导航,模型驱动的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《AI大模型驶向产业之海,需要高质数据“河道”引航》文章吧,也可关注golang学习网公众号了解相关技术文章。

- 上一篇
- 如何使用Java Websocket实现实时股票行情展示?

- 下一篇
- 如何使用Java解决Websocket SSL握手失败问题
-
- 科技周边 · 人工智能 | 10小时前 |
- LangGraph打造WhatsAppAI助手教程
- 174浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 | 辅助驾驶 理想L系列 征程6M ADPro ATL全天候激光雷达
- 理想L系列智能焕新版发布,地平线6M赋能!
- 295浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- 蔚来ES6新车5月10日预订开启各地展车已到
- 477浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- 小米SU7第24万台下线仅13个月,惊人速度!
- 463浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 32次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 30次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 28次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 31次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 46次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览