当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 国科大&首师大合作综述:揭示「白盒」张量网络如何提升量子机器学习的可解释性和效率

国科大&首师大合作综述:揭示「白盒」张量网络如何提升量子机器学习的可解释性和效率

来源:机器之心 2023-12-01 20:59:27 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《国科大&首师大合作综述:揭示「白盒」张量网络如何提升量子机器学习的可解释性和效率》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

国科大&首师大合作综述:揭示「白盒」张量网络如何提升量子机器学习的可解释性和效率

编辑 | 紫罗

AI 的各个领域中,深度机器学习已经取得了显著的成功,但同时实现高可解释性和高效率仍然是一个严峻的挑战

张量网络,即Tensor Network(TN),起源于量子力学,是一种成熟的数学工具。在开发高效的“白盒”机器学习方案方面,它展示了独特的优势

近日,首都师范大学的冉仕举和中国科学院大学的苏刚从量子力学中汲取灵感,综述了一种基于 TN 的创新方法,为协调深度机器学习的可解释性和效率这一长期挑战提供了一个有前景的解决方案。

一方面,TN ML 的可解释性可以通过基于量子信息和多体物理的坚实理论基础来实现。另一方面,强大的TN表达和量子多体物理中开发的先进计算技术可以获得高效率。随着量子计算机的快速发展,TN有望在不久的将来朝着「量子 AI」的方向产生可在量子硬件上运行的新颖方案

该综述以《Tensor Networks for Interpretable and Efficient Quantum-Inspired Machine Learning》为题,于 2023 年 11 月 17 日发表在《Intelligent Computing》上。

国科大&首师大合作综述:揭示「白盒」张量网络如何提升量子机器学习的可解释性和效率

论文链接:https://spj.science.org/doi/10.34133/icomputing.0061

深度学习模型,特别是神经网络模型,常常被称为「黑匣子」,因为它们的决策过程复杂且难以解释。神经网络是目前最强大的深度学习模型。展示其强大功能的一个典型例子是GPT。然而,由于缺乏可解释性,即使是GPT也面临着稳健性和隐私保护等严重问题

这些模型缺乏可解释性可能会导致人们对其预测和决策缺乏信任,从而限制了它们在重要领域的实际应用

基于量子信息和多体物理的张量网络为 ML 提供了「白盒」方法。研究人员表示:「张量网络在将量子概念、理论和方法与 ML 联系起来以及有效实现基于张量网络的 ML 方面发挥着至关重要的作用。」

来自量子物理学的强大的「白盒」数学工具 Quantum physics has brought forth powerful "white box" mathematical tools.

随着经典计算和量子计算的快速发展,TN 为克服可解释性和效率之间的困境提供了新的思路。TN 被定义为多个张量的收缩。它的网络结构决定了张量收缩的方式。

在图1中,展示了三种类型的TN的图解表示。这三种类型分别是矩阵乘积态(MPS)表示、树型TN以及投影纠缠对态(PEPS)表示

国科大&首师大合作综述:揭示「白盒」张量网络如何提升量子机器学习的可解释性和效率

图 1:3 种类型的 TN 的图解表示:(A)MPS、(B)树 TN 和(C)PEPS。(来源:论文)

TN 作为大规模量子系统状态的有效表示,在量子力学领域取得了显著的成功。在 TN 理论中,满足纠缠熵面积定律的状态可以通过具有有限键维数的 TN 表示来有效地近似。

基于 MPS 的算法,包括密度矩阵重整化组和时间演化块抽取 ,在模拟纠缠熵时表现出显著的效率。此外,MPS 还可以表示许多广泛应用于量子信息处理和计算中的人工构造的状态,例如 Greenberger–Horne–Zeilinger 状态和 W状态。

PEPS 表示遵守二维及更高维度的面积定律,并在高维量子系统研究中取得了巨大的成功。总之,纠缠熵的面积定律为模拟量子系统的TN的表示或计算能力提供了内在的解释。这种解释也适用于TN ML。此外,TN作为一种"白盒"数值工具(Born机器),类似于ML的(经典)概率模型,可以通过玻恩的量子概率解释(也被称为玻恩规则)来解释

国科大&首师大合作综述:揭示「白盒」张量网络如何提升量子机器学习的可解释性和效率

图片2:采用MPS(Tensor Train形式)可以有效地表示或者公式化大量数学对象。(引自:论文)

受到量子启发的机器学习的技术进展 (Technological advancements in machine learning inspired by quantum)

TN提供了一种新的方法来解决机器学习中可解释性和效率之间的困境,这得益于其完善的理论和有效的方法。目前,有两条相互纠缠的研究路线正在争论中:

  1. 量子理论如何作为 TN ML 可解释性的数学基础?
  2. 量子力学 TN 方法和量子计算技术如何产生高效的T N ML 方案?

在这篇内容中,研究人员从特征映射、建模和基于量子计算的 ML 的角度介绍了最近在量子启发 ML 方面取得的令人鼓舞的进展,围绕这两个问题展开了讨论。这些进展与使用 TN 在提高效率和可解释性方面的优势密切相关。这些 ML 方案通常被称为「量子启发」,因为它们的理论、模型和方法源自量子物理学或受其启发。然而,我们需要更多努力来开发基于量子物理学的可解释性系统框架

在下面的表格中,总结了关于TN ML的主要方法以及它们与效率和可解释性之间的关系

国科大&首师大合作综述:揭示「白盒」张量网络如何提升量子机器学习的可解释性和效率

强化经典机器学习的技术网络

作为一种基本的数学工具,神经网络在 ML 中的应用并不局限于那些遵循量子概率解释的应用。鉴于 TN 可用于有效地表示和模拟经典随机系统的配分函数,如 Ising 和 Potts 模型,TN 与玻尔兹曼机之间的关系已被广泛研究。

TN还被用来增强NN并开发新颖的ML模型,忽略任何概率解释。 重新写成中文: TN还被用于增强NN并开发新颖的ML模型,无视任何概率解释

基于同样的基础,模型压缩方法被提出来将 NN 的变分参数分解为 TN 或直接将变分参数表示为 TN。后者可能不需要显式分解过程,其中神经网络的参数不会恢复为张量,而是直接恢复为 TT 形式 、矩阵乘积算子或深度 TN。非线性激活函数已添加到 TN 中,以提高其 ML 性能,将 TN 从多线性模型推广到非线性模型。

需要重写的内容是: 结论

长期以来,人们一直关注解决人工智能(尤其是深度机器学习)在效率和可解释性之间的困境。在这方面,我们回顾了TN取得的令人鼓舞的进展,这是一种可解释且高效的量子启发式机器学习方法

图 3 中的「N ML butterfly」列出了 TN 在 ML 方面的优势。对于量子启发的 ML,TN 的优势可以从两个关键方面来总结:用于可解释性的量子理论和用于提高效率的量子方法。一方面,TN 使我们能够应用统计学和量子理论(例如纠缠理论)来构建可解释性的概率框架,这可能超出经典信息或统计理论的描述。另一方面,强大的量子力学 TN 算法和大幅增强的量子计算技术将使量子启发的 TN ML 方法在经典和量子计算平台上都具有高效率。

国科大&首师大合作综述:揭示「白盒」张量网络如何提升量子机器学习的可解释性和效率

图 3:「TN ML butterfly」总结了 2 个独特优势:基于量子理论的可解释性(左翼)和基于量子方法的效率(右翼)。(来源:论文)

特别是,随着最近在GPT领域的显著进展,模型复杂度和计算能力都出现了前所未有的激增,这为TN ML带来了新的机遇和挑战。在面对新兴的GPT AI时,可解释性变得越来越有价值,不仅可以提高研究效率,还可以更好地应用和更加安全地控制

在当前的NISQ时代和即将到来的真正的量子计算时代,TN正在迅速成长为探索量子人工智能的重要数学工具,从理论、模型、算法、软件、硬件和应用等各个角度

参考内容:https://techxplore.com/news/2023-11-tensor-networks-efficiency-quantum-inspired-machine.html

今天关于《国科大&首师大合作综述:揭示「白盒」张量网络如何提升量子机器学习的可解释性和效率》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
IDC MarketScape2023年分布式数据库报告:OceanBase位列“领导者”类别,产品能力领先IDC MarketScape2023年分布式数据库报告:OceanBase位列“领导者”类别,产品能力领先
上一篇
IDC MarketScape2023年分布式数据库报告:OceanBase位列“领导者”类别,产品能力领先
《中国奇谭》人气篇章《小妖怪的夏天》动画大电影备案
下一篇
《中国奇谭》人气篇章《小妖怪的夏天》动画大电影备案
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    13次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    14次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    27次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    26次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    53次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码