谷歌:LLM找不到推理错误,但能纠正它
在科技周边实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《谷歌:LLM找不到推理错误,但能纠正它》,聊聊,希望可以帮助到正在努力赚钱的你。
今年,大型语言模型(LLM)成为人工智能领域备受关注的焦点。LLM 在各种自然语言处理(NLP)任务上取得了显著的进展,尤其在推理方面的突破令人惊叹。然而,在复杂的推理任务上,LLM 的表现仍然有待提高
LLM 能否判断出自己的推理存在错误?最近,剑桥大学和 Google Research 联合开展的一项研究发现:LLM 无法自行发现推理错误,但却能够使用该研究提出的回溯方法来修正错误
- 论文地址:https://arxiv.org/pdf/2311.08516.pdf
- 数据集地址:https://github.com/WHGTyen/BIG-Bench-Mistake
这篇论文引发了一些争议,有人对此提出异议。例如,在Hacker News上,有人评论说论文的标题夸大其词,有点标题党的味道。还有人批评论文中提出的纠错逻辑错误的方法是基于模式匹配,而不是采用逻辑方法,这种方法容易失败
Huang 等人在论文《Large language models cannot self-correct reasoning yet》中指出:自我校正或许是能有效地提升模型输出的风格和质量,但鲜有证据表明 LLM 有能力在没有外部反馈的情况下识别和纠正自身的推理和逻辑错误。比如 Reflexion 和 RCI 都使用了基本真值的纠正结果作为停止自我校正循环的信号。
剑桥大学和Google Research的研究团队提出了一种全新的思路:将自我校正过程分为错误发现和输出校正两个阶段
- 错误发现是一种基础推理技能,已经在哲学、心理学和数学领域得到了广泛的研究和应用,并催生了批判性思维、逻辑和数学谬误等概念。我们可以合理地认为发现错误的能力也应该是 对 LLM 的一项重要要求。但是,本文结果表明:当前最佳的 LLM 目前还无法可靠地发现错误。
- 输出校正涉及部分或完全修改之前生成的输出。自我校正是指由生成输出的同一模型来完成校正。尽管 LLM 没有发现错误的能力,但本文表明:如果能提供有关错误的信息(如通过一个小型的监督式奖励模型),LLM 可以使用回溯方法校正输出。
本文的主要贡献包括:
- 使用思维链 prompt 设计方法,任何任务都可以变成错误发现任务。研究者为此收集并发布了一个 CoT 类型的轨迹信息数据集 BIG-Bench Mistake,该数据集由 PaLM 生成,并标注了第一个逻辑错误的位置。研究者表示,BIG-Bench Mistake 在它的同类数据集中,是首个不局限于数学问题的数据集。
- 为了测试当前最佳 LLM 的推理能力,研究者基于新数据集对它们进行了基准评测。结果发现,当前 SOTA LLM 也难以发现错误,即便是客观的明确的错误。他们猜测:LLM 无法发现错误是 LLM 无法自我校正推理错误的主要原因,但这方面还有待进一步研究。
- 本文提出使用回溯方法来校正输出,利用错误的位置信息来提升在原始任务上的性能。研究表明这种方法可以校正原本错误的输出,同时对原本正确的输出影响极小。
- 本文将回溯方法解释成了「言语强化学习」的一种形式,从而可实现对 CoT 输出的迭代式提升,而无需任何权重更新。研究者提出,可以通过一个经过训练的分类器作为奖励模型来使用回溯,他们也通过实验证明了在不同奖励模型准确度下回溯的有效性。
BIG-Bench Mistake数据集
BIG-Bench 包含了 2186 个使用 CoT 风格的轨迹信息集合。每个轨迹都是由 PaLM 2-L-Unicorn 生成的,并且标注了第一个逻辑错误的位置。表格 1 展示了一个轨迹示例,其中错误出现在第 4 步
这些轨迹来自 BIG-Bench 数据集中的 5 个任务:词排序、跟踪经过混洗的对象、逻辑推演、多步算术和 Dyck 语言。
为了解答每个任务的问题,他们使用了CoT prompt 设计法来调用 PaLM 2。为了将 CoT 轨迹分成明确的步骤,他们采用了《React: Synergizing reasoning and acting in language models》中提出的方法,分开生成每一步,并使用换行符作为停止标记
生成所有轨迹时,在该数据集中,当temperature = 0时,答案的正确性由精确匹配决定
基准测试结果
在新的错误发现数据集上,报告了GPT-4-Turbo、GPT-4和GPT-3.5-Turbo的准确度如表4所示
每个问题都有两种可能的答案:要么正确,要么错误。如果是错误的话,数值 N 将指示第一个错误出现的步骤
所有模型都被输入了同样的 3 个 prompt。他们使用了三种不同的 prompt 设计方法:
- 直接的轨迹层面的 prompt 设计
- 直接的步骤层面的 prompt 设计
- CoT 步骤层面的 prompt 设计
需要重新写作的内容是:相关讨论
研究结果表明,这三个模型都难以应对这个新的错误发现数据集。GPT 的表现最好,但其在直接的步骤层面的 prompt 设计上也只能达到 52.87 的总体准确度。
这说明当前最佳的 LLM 难以发现错误,即使是在最简单和明确的案例中。相较之下,人类在没有特定专业知识时也能发现错误,并且具有很高的一致性。
研究者猜测:LLM 无法发现错误是 LLM 无法自我校正推理错误的主要原因。
prompt 设计方法的比较
研究人员发现,从直接轨迹层面的方法到步骤层面的方法再到 CoT 方法,轨迹的准确度显著降低,没有出现错误。图 1 显示了这种权衡
研究者认为,造成这种情况的原因可能是模型输出的数量。这三种方法都需要生成越来越复杂的输出:直接生成轨迹的提示设计方法需要单个标记,直接生成步骤的提示设计方法需要每步一个标记,而CoT步骤层面的提示设计方法则需要每步多个句子。如果每次生成调用的错误率存在一定的概率,则每条轨迹的调用次数越多,模型至少识别出一个错误的可能性就越大
将错误位置作为正确性代理的少样本 prompt 设计
研究者探究了这些 prompt 设计方法能否可靠地决定一个轨迹的正确性,而不是错误位置。
他们算出了平均F1分数,计算依据是模型能否正确预测轨迹中是否存在错误。如果存在错误,则认为模型预测的轨迹是“错误答案”。否则,认为模型预测的轨迹是“正确答案”
使用 correct_ans 和 incorrect_ans 作为正例标签,并根据每个标签的出现次数进行加权,研究者计算了平均 F1 分数,结果见表 5。
这个加权 F1 分数表明,对于确定最终答案的正确性而言,通过 prompt 寻找错误是一个很糟糕的策略。
回溯
黄等人指出,LLM在没有外部反馈的情况下无法自我校正逻辑错误。然而,在许多真实世界的应用中,通常是没有可用的外部反馈的
研究者在这项研究中采用了一种替代方案:用一个在少量数据上训练的轻量级分类器替代外部反馈。与传统强化学习中的奖励模型类似,这个分类器可以检测 CoT 轨迹中的任何逻辑错误,然后再将其反馈给生成器模型以提升输出。如果想要最大化提升,可以进行多次迭代。
研究者提出了一种简单的方法,通过回溯逻辑错误的位置来提升模型的输出
- 模型首先生成一个初始的 CoT 轨迹。在实验中,设置 temperature = 0。
- 然后使用奖励模型确定轨迹中错误的位置。
- 如果没有错误,就转向下一个轨迹。如果有错误,则再次向模型输入 prompt 以执行相同的步骤,但这一次 temperature = 1,生成 8 个输出。这里会使用同样的 prompt 以及包含错误步骤之前所有步骤的部分轨迹。
- 在这 8 个输出中,过滤掉与之前的错误一样的选项。再从剩下的输出中选择对数概率最高的一个。
- 最后,用新的重新生成的步骤替换之前步骤,再重新设置 temperature = 0,继续生成该轨迹的剩余步骤。
相比于之前的自我校正方法,这种回溯方法有诸多优势:
- 新的回溯方法不需要对答案有预先的知识。相反,它依赖于有关逻辑错误的信息(比如来自训练奖励模型的信息),这可以使用奖励模型一步步地确定。逻辑错误可能出现在 correct_ans 轨迹中,也可能不出现在 incorrect_ans 轨迹中。
- 回溯方法不依赖于任何特定的 prompt 文本或措辞,从而可减少相关的偏好。
- 相比于需要重新生成整个轨迹的方法,回溯方法可以通过复用已知逻辑正确的步骤来降低计算成本。
- 回溯方法可直接提升中间步骤的质量,这可能对需要正确步骤的场景来说很有用(比如生成数学问题的解),同时还能提升可解释性。
研究人员使用 BIG-Bench Mistake 数据集进行实验,旨在探讨回溯方法是否有助于 LLM 校正逻辑错误。实验结果请参见表格6
∆accuracy✓ 是指在原始答案是 correct_ans 时,在轨迹集合上的 accuracy_ans 之差。
对于错误答案轨迹的结果,需要重新计算准确度
这些分数结果表明:校正 incorrect_ans 轨迹的收益大于改变原本正确的答案所造成的损失。此外,尽管随机基准也获得了提升,但它们的提升显著小于使用真正错误位置时的提升。注意,在随机基准中,涉及步骤更少的任务更可能获得性能提升,因为这样更可能找到真正错误的位置。
为了探索在没有好的标签时,需要哪种准确度等级的奖励模型,他们实验了通过模拟的奖励模型使用回溯;这种模拟的奖励模型的设计目标是产生不同准确度等级的标签。他们使用 accuracy_RM 表示模拟奖励模型在指定错误位置的准确度。
当给定奖励模型的 accuracy_RM 为 X% 时,便在 X% 的时间使用来自 BIG-Bench Mistake 的错误位置。对于剩余的 (100 − X)%,就随机采样一个错误位置。为了模拟典型分类器的行为,会按照与数据集分布相匹配的方式来采样错误位置。研究者也想办法确保了采样的错误位置与正确位置不匹配。结果见图 2。
可以观察到,当损失率达到65%时,∆准确率开始趋于稳定。实际上,对于大多数任务而言,在准确率_RM约为60-70%时,∆准确率✓已经超过了∆准确率✗。这表明,尽管更高的准确率可以获得更好的结果,但即使没有黄金标准的错误位置标签,回溯仍然有效
本篇关于《谷歌:LLM找不到推理错误,但能纠正它》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

- 上一篇
- 新型的注意力机制Meta,使得大型模型更加类似于人脑,自动过滤掉与任务无关的信息,从而提高准确率27%

- 下一篇
- 全新设计!Redmi K70 Pro采用晴雪纯白配色,仿佛冰川冰晶的视觉盛宴
-
- 科技周边 · 人工智能 | 1分钟前 |
- 10分钟上手!DeepSeek生成古风插画+阴阳怪气文案,流量暴增10倍!
- 307浏览 收藏
-
- 科技周边 · 人工智能 | 5分钟前 |
- Poe AI 2024最新版教程 | 免费白嫖Claude 3、GPT-4,集成了所有主流的AI聊天机器人!
- 262浏览 收藏
-
- 科技周边 · 人工智能 | 6分钟前 |
- 豆包AI神操作!用发疯文学做热点图阅读量三天破万
- 392浏览 收藏
-
- 科技周边 · 人工智能 | 10分钟前 |
- 即梦ai怎样同步云端存储 即梦ai数据备份与恢复教程
- 354浏览 收藏
-
- 科技周边 · 人工智能 | 11分钟前 | 文远知行
- 文远知行Q1盈利猛增!Robotaxi业务大揭秘
- 102浏览 收藏
-
- 科技周边 · 人工智能 | 38分钟前 |
- 即梦AI高清封面导出?快速生成缩略图!
- 258浏览 收藏
-
- 科技周边 · 人工智能 | 48分钟前 |
- 零基础也能DeepSeek?AI写作模板轻松上手!
- 362浏览 收藏
-
- 科技周边 · 人工智能 | 49分钟前 |
- 办公党必备:DeepSeek与Foxmail邮件自动处理教程
- 199浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 即梦AI团队协作:多人编辑功能,速来体验!
- 159浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 互联网信息服务算法备案系统
- 了解互联网信息服务算法备案系统,掌握如何进行算法备案的详细步骤和要求,确保您的互联网服务合规运营。
- 57次使用
-
- 魔匠AI
- SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
- 103次使用
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 134次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 245次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 123次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览