当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

来源:机器之心 2023-11-27 16:22:18 0浏览 收藏

来到golang学习网的大家,相信都是编程学习爱好者,希望在这里学习科技周边相关编程知识。下面本篇文章就来带大家聊聊《材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia》,介绍一下,希望对大家的知识积累有所帮助,助力实战开发!

在计算图形学领域,材质外观刻画了真实物体与光线之间的复杂物理交互,通常可表达为随空间位置变化的双向反射分布函数(Spatially-Varying Bidirectional Reflectance Distribution Function,缩写为 SVBRDF)。它是视觉计算中不可或缺的组成部分,在文化遗产、电子商务、电子游戏和视觉特效等领域中有着广泛的应用。

在过去的二十年里,特别是深度学习流行后,学术界与工业界对高精度、多样化数字材质外观的需求不断增加。但由于技术上的挑战,采集大型数据库仍然十分困难,目前公开可用的材质外观实拍数据库的数量非常有限。

为此,浙江大学计算机辅助设计与图形系统全国重点实验室和杭州相芯科技有限公司的研究团队联合提出了一种新型集成系统,用于鲁棒、高质量和高效地采集平面各向异性材质外观。利用该系统,研究团队构建了 OpenSVBRDF 公开材质数据库

材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

                               图 1:OpenSVBRDF 数据库中的部分材质样例展示。每一行同属一个材质类别。

这是第一个大规模 6 维 SVBRDF 的实测数据库,共有 1,000 个高质量平面样本,空间分辨率为 1,024×1,024,等效为超过 10 亿个实测 BRDF,涵盖了包括木材、织物和金属在内的 9 种类别。

数据库主页:https://opensvbrdf.github.io/

目前,数据库对非商业应用完全免费。只需要提交基本信息在网站上申请账号,通过审核后,即可直接下载包括 GGX 纹理贴图在内的相关数据和代码。相关研究论文《OpenSVBRDF: A Database of Measured Spatially-Varying Reflectance》已被计算机图形学顶级国际会议 ACM SIGGRAPH ASIA 2023 (Journal Track) 长文接收。

材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

论文主页:https://svbrdf.github.io/

技术挑战

直接采样方法在不同的光照和观察角度的组合下对物理材质进行密集测量 [Lawrence et al. 2006]。这么做虽然能够获得高质量且鲁棒的采集结果,但其效率很低,需要高昂的时间和存储成本。还有一种选择是基于先验知识的重建方法,可以从稀疏的采样数据中重建材质。这样虽然提高了效率,但当先验条件不满足时,其质量不尽人意 [Nam et al. 2018]。此外,当前SOTA光路复用技术,虽然达到了较高的采集效率和重建质量,但在处理如拉丝金属和抛光木皮等高度复杂材质时,算法还不够鲁棒 [Kang et al. 2018]。
材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia
图 2:现有材质采集研究的代表工作。从左到右分别是 [Lawrence et al. 2006],[Nam et al. 2018] 以及 [Kang et al. 2018]。其中 [Kang et al. 2018] 为该团队在 2018 年发表于 ACM SIGGRAPH 的早期工作。

硬件

为高效扫描材质外观,研究团队搭建了一个接近半立方体的近场光照多路复用设备,其尺寸约为 70cm×70cm×40cm。样本被放置在一块透明的亚克力板上,可以通过抽屉滑轨快速滑入 / 滑出,来实现高吞吐率。该设备由 2 台机器视觉相机和 16,384 个高亮度 LED 组成,两台相机分别从大约 90 度(主视角)和 45 度(次视角)的角度拍摄样本,LED 分布在设备的 6 个面上。自主研发的高性能控制电路负责对每个 LED 进行独立亮度控制,并在硬件层面实现了光源投射和相机曝光的高精度同步。

材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

                                图 3:采集设备外观及两个视角下的照片。

采集重建

本系统创新性地结合了当前基于网络预测和基于微调两大类流行方法的优点,既能通过可微分光照图案优化来增加物理采集效率,又能通过微调来进一步提升最终结果质量,从而首次实现了对于平面 SVBRDF 的高鲁棒性、高质量以及高效率的采集重建。

具体来说,为了重建物理样本,研究者首先通过在均匀照明下匹配密集 SIFT 特征来建立两个相机视角之间的高精度对应关系。对于物理采集,首先将光照图案作为自编码器的一部分进行优化,实现高效采集。该自编码器自动学习如何基于两个视角的测量值来重建复杂外观,并将结果表示为中间神经表达。随后,根据主视角相机在 63 个等效线性光源下拍摄的照片,通过绘制图像误差对神经表达进行微调,以提高最终结果的质量和鲁棒性。图 3 展示了整个系统的处理流程。更多详细信息请参阅原文论文。

材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

                               图 4:整个系统的采集重建流程。

结果

研究人员共采集重建了 9 个类别,共计 1,000 个样本的外观,为了方便基于物理的标准绘制管线(PBR)直接使用,该研究还将神经表达拟合到了业界标准的各向异性 GGX BRDF 模型参数。图 5 展示了材质重建结果的分项参数 / 属性。每个样本存储了 193 张原始 HDR 照片(总大小 15GB)、中间神经表达(290MB),以及 6 张贴图,包括表示 GGX 参数的纹理贴图和透明度贴图(总大小 55MB)。神经表达和纹理贴图的空间分辨率均为 1,024×1,024。

材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

                                  图 5:材质重建结果分项属性(包括神经表达、漫反射率、高光反射率、粗糙度等)。

为了证明重建结果的正确性,研究人员将主视角下的照片(下图第一行)和神经表达绘制结果(下图第二行)进行了比较。定量误差(以 SSIM/PSNR 表达)标注在绘制图片的底部。由下图结果可见,本系统实现了高质量材质重建(SSIM>=0.97, PSNR>=34db)。

材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

                                 图 6:实拍照片和神经表达绘制结果在主视角下的对比。

为了进一步证明重建结果的视角域泛化性,研究人员将点光源照射下、两个视角所拍摄的照片和使用 GGX 拟合参数绘制的结果进行了比较,验证了重建结果的跨视角正确性。

材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

                                图 7:实拍照片和各向异性 GGX 拟合参数绘制结果在两个视角下的对比。

研究人员还展示了该数据库在材质生成、材质分类以及材质重建三方面的应用。具体细节请参考原始论文。

材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

                                     图 8:利用 OpenSVBRDF 训练 MaterialGAN 来实现材质生成与插值。

材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

                                    图 9:利用 OpenSVBRDF 训练主动光照以提升材质分类精度。

材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia

                                  图 10:利用 OpenSVBRDF 来提高基于单点采样(左)和光路多路复用(右)的 BRDF 重建质量。

展望

研究人员将努力扩展现有数据库,增加展现多样性外观的材质样本。未来,他们还计划建立同时包含材质外观和几何形状的大规模高精度实测物体数据库。此外,研究人员将基于 OpenSVBRDF 设计在材质估计、分类和生成等方向上的公开 Benchmark,通过客观定量的标准测试,为推动相关研究的未来发展提供坚实的数据保障。

到这里,我们也就讲完了《材质界的ImageNet,大规模6维材质实拍数据库OpenSVBRDF发布|SIGGRAPH Asia》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于产业,OpenSVBRDF的知识点!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
时尚前卫!东风集团推出全新硬朗皮卡概念图 透露新能源雄心时尚前卫!东风集团推出全新硬朗皮卡概念图 透露新能源雄心
上一篇
时尚前卫!东风集团推出全新硬朗皮卡概念图 透露新能源雄心
华为与夏普签订长期全球专利交叉许可协议,覆盖 4G 和 5G 等
下一篇
华为与夏普签订长期全球专利交叉许可协议,覆盖 4G 和 5G 等
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    2次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    3次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    3次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    2次使用
  • PicDoc:AI文本转视觉图表,告别枯燥文字,一键生成PPT图例
    PicDoc
    PicDoc,AI驱动的文本转视觉平台,轻松将文字转化为专业图表、思维导图、PPT图例。免费试用,无需下载,提升职场汇报、教学资料、文章配图等场景的表达力。
    2次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码