生成式AI的五大模型:VAEs、GANs、Diffusion、Transformers、NeRFs
一分耕耘,一分收获!既然都打开这篇《生成式AI的五大模型:VAEs、GANs、Diffusion、Transformers、NeRFs》,就坚持看下去,学下去吧!本文主要会给大家讲到等等知识点,如果大家对本文有好的建议或者看到有不足之处,非常欢迎大家积极提出!在后续文章我会继续更新科技周边相关的内容,希望对大家都有所帮助!
为任务选择正确的GenAI模型需要了解每个模型使用的技术及其特定能力,下面请了解VAEs、GANs、Diffusion、Transformers和NerFs五大GenAI模型。
以前,大多数人工智能模型都专注于更好地处理、分析和解释数据。直到最近,在所谓的生成神经网络模型方面的突破带来了一系列用于创建各种内容的新工具,从照片和绘画到诗歌、代码、电影剧本和电影。
顶级 AI 生成模型概述
在2010年代中期,研究人员发现了生成人工智能模型的新前景。当时,他们开发了变分自编码器(VAEs)、生成对抗网络(GAN)和扩散模型(Diffusion)。2017年问世的转换器(Transformers)是一种突破性的神经网络,能够大规模分析大型数据集,以自动创建大型语言模型(LLM)。到了2020年,研究人员引入了神经辐射场(NeRF)技术,这种技术可以从三维图像生成二维内容
这些生成模型的快速发展是一项正在进行的工作,因为研究人员的调整通常会带来巨大的进步,并且显著的进展并没有减缓。怀特教授在加州大学伯克利分校表示:“模型架构在不断变化,将继续开发新的模型架构。”
每个模型都有其特殊的能力,目前,扩散模型(Diffusion)在图像和视频合成领域表现异常出色,转换器模型(Transformers)在文本领域表现良好,GAN 擅长用合理的合成样本来扩充小数据集。但是选择最佳模型始终取决于特定的用例。
所有的模型都不相同,人工智能研究人员和ML(机器学习)工程师必须为适当的用例和所需的性能选择合适的一个,并考虑模型在计算、内存和资本方面可能存在的限制。
特别是转换器模型对生成模型的最新进展和激动产生了推动作用。UST数字化转型咨询公司的首席人工智能架构师Adnan Masood表示:“人工智能模型的最新突破来自于对大量数据进行预训练,并使用自我监督学习来训练没有明确标签的模型。”
例如,OpenAI的生成式预训练转换器系列模型是该类别中最大、最强大的模型之一。其中,GPT-3模型就包含了175亿个参数
顶级生成式 AI 模型的主要应用
Masood解释说,顶级生成AI模型使用各种不同的技术和方法来生成全新的数据。这些模型的主要功能和用途包括:
- VAE使用编码器-解码器架构来生成新数据,通常用于图像和视频生成,例如生成用于隐私保护的合成人脸。
- GAN 使用生成器和鉴别器来生成新数据,通常用于视频游戏开发中以创建逼真的游戏角色。
- Diffusion添加然后消除噪声以生成具有高细节水平的高质量图像,从而创建近乎逼真的自然场景图像。
- Transformer可以有效地并行处理顺序数据,以进行机器翻译、文本摘要和图像创建。
- NeRF提供了一种使用神经表示的3D场景重建的新方法。
下面让我们更详细地介绍每种方法。
VAE
VAE是在2014年开发的,其目的是利用神经网络更有效地对数据进行编码
Sisense的AI负责人Yael Lev表示,人工智能分析平台VAE学会了更有效地表达信息。VAE由两部分组成:一个编码器(encoder)将数据压缩,另一个解码器(decoder)将数据恢复到原始形式。它们非常适合从较小的信息中生成新的实例,修复嘈杂的图像或数据,检测数据中的异常内容并填充缺失的信息
然而,根据UST的Masood所说,变分自编码器(VAE)也倾向于生成模糊或低质量的图像。另外一个问题是,用于捕获数据结构的低维潜在空间错综复杂且具有挑战性。这些缺点可能会限制VAE在需要高质量图像或对潜在空间有清晰理解的应用中的有效性。VAE的下一次迭代可能会侧重于提高生成数据的质量、加快训练速度并探索其在序列数据方面的适用性
GANs
GANs是在2014年开发出来的,它被用于生成逼真的面部和打印数字。GAN将生成真实内容的神经网络与检测虚假内容的神经网络对立起来。普华永道全球人工智能负责人Anand Rao说:“逐步地,这两个网络融合在一起,产生了与原始数据无法区分的生成图像。”
GAN 通常用于图像生成、图像编辑、超分辨率、数据增强、风格传输、音乐生成和深度伪造创建。GAN的一个问题是,它们可能会遭受模式崩溃,其中生成器产生有限和重复的输出,使它们难以训练。Masood说,下一代GAN将专注于提高训练过程的稳定性和融合性,将其适用性扩展到其他领域,并开发更有效的评估指标。GAN也很难优化和稳定,并且对生成的样本没有明确的控制。
Diffusion
扩散模型由斯坦福大学的一组研究人员于2015年开发,用于模拟和反转熵和噪声。扩散技术提供了一种模拟现象的方法,例如盐等物质如何扩散到液体中,然后逆转它,此相同模型还有助于从空白图像生成新内容。
扩散模型是当前图像生成的首选,它们是流行的图像生成服务的基本模型,例如Dall-E 2,Stable Diffusion,Midjourney和Imagen。它们还用于管道中生成语音、视频和 3D 内容。此外,扩散技术还可用于数据插补,其中预测和生成缺失数据
许多应用将扩散模型与LLM配对,用于文本到图像或文本到视频生成。例如,Stable Diffusion 2 使用对比语言-图像预训练模型作为文本编码器,它还添加了用于深度和升级的模型。
Masood预测,对稳定扩散等模型的进一步改进可能侧重于改进负面提示,增强以特定艺术家风格生成图像的能力,并改善名人图像。
Transformers
转换器模型是由Google Brain的一个团队在2017年开发的,旨在改善语言翻译。这些模型非常适合以不同的顺序处理信息,并且能够并行处理数据,同时还能利用未标记的数据来扩展到大型模型
重写后的内容:这些技术可以应用于文本摘要、聊天机器人、推荐引擎、语言翻译、知识库、个性化推荐(通过偏好模型)、情感分析和命名实体识别,用于识别人物、地点和事物。此外,它们还可以用于语音识别,如OpenAI的耳语技术,以及视频和图像中的对象检测、图像字幕、文本分类和对话生成等领域
尽管Transformers具有多功能性,但它们确实存在局限性。它们的训练成本可能很高,并且需要大型数据集。由此产生的模型也相当大,这使得识别偏差或不准确结果的来源变得具有挑战性。马苏德说:“它们的复杂性也使得解释其内部运作变得困难,阻碍了它们的可解释性和透明度。
Transformer模型架构
NeRF
NeRF 于 2020 年开发,用于将光场的 3D 表示捕获到神经网络中,第一次实施非常缓慢,需要几天时间才能捕获第一个3D图像。
然而,在2022年,英伟达公司的研究人员发现了一种在大约30秒内生成新模型的方法。这些模型可以以几兆字节为单位表示3D对象,并具有相当的质量,而其他技术可能需要占用千兆字节。这些模型有望为捕捉和生成元宇宙中的3D对象带来更有效的技术。英伟达的研究总监亚历山大·凯勒(Alexander Keller)表示,NeRFs对于3D图形的重要性最终可能与数码相机对现代摄影的重要性一样重要
Masood表示,NeRF在机器人、城市测绘、自主导航和虚拟现实应用方面显示出巨大的潜力。然而,NERF的计算成本仍然很高,将多个NERF组合成更大的场景也很具有挑战性,今天NeRF唯一可行的用例是将图像转换为3D对象或场景。尽管存在这些限制,Masood预测NeRF将在基本图像处理任务中找到新的角色,例如去噪,去模糊,上采样,压缩和图像编辑
GenAI生态系统进行时
重要的是要注意,这些模型正在进行中,研究人员正在寻求改进单个模型以及将它们与其他模型和处理技术相结合的方法。Lev预测,生成模型将变得更加通用,应用程序将扩展到传统领域之外,用户还可以更有效地指导AI模型,并了解它们如何更好地工作。
在多模态模型上也有工作正在进行中,这些模型使用检索方法来调用针对特定任务优化的模型库。他还希望生成模型能够开发其他功能,例如进行API调用和使用外部工具,例如,根据公司的呼叫中心知识微调的LLM将提供问题的答案并执行故障排除,例如重置客户调制解调器或在问题解决时发送电子邮件。
实际上,未来可能会有更高效的东西取代今天流行的模型架构。怀特表示:“当新架构出现时,Diffusion和Transformer模型可能不再有用。”我们从Diffusion的引入中看到了这一点,因为它们对自然语言应用的方法并不利于长短期记忆算法和递归神经网络(RNN)
有人预测,生成AI生态系统将演变为三层模型。基础层是一系列基于文本、图像、语音和代码的基础模型,这些模型会摄取大量数据,并基于大型深度学习模型构建,同时结合了人类的判断。接下来,特定于行业和功能的领域模型将改善医疗保健、法律或其他类型的数据处理。在顶层,公司将使用专有数据和主题专业知识构建专有模型。这三个层将颠覆团队开发模型的方式,并迎来模型即服务的新时代
如何选择生成式 AI 模型:首要注意事项
根据Sisense的Lev的说法,在模型之间进行选择时的首要考虑因素包括以下内容:
您要解决的问题。选择已知适用于您的特定任务的模型。例如,将转换器用于语言任务,将 NeRF 用于 3D 场景。
数据的数量和质量。Diffusion需要大量良好的数据才能正常工作,而VAE则在数据较少的情况下工作得更好。
结果的质量。GAN 更适合清晰和详细的图像,而 VAE 更适合更平滑的结果。
训练模型的难易程度。GAN可能很难训练,而VAE和Diffusion更容易。
计算资源要求。NeRF和Diffusion都需要大量的计算机能力才能正常工作。
需要控制和理解。如果您想更好地控制结果或更好地了解模型的工作原理,VAE 可能比 GAN 更好。
好了,本文到此结束,带大家了解了《生成式AI的五大模型:VAEs、GANs、Diffusion、Transformers、NeRFs》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

- 上一篇
- 博主实测OPPO ColorOS 14 AI端侧模型:苹果做点事吧

- 下一篇
- AI Agents 技术解析:一篇涵盖全面的文章
-
- 科技周边 · 人工智能 | 1小时前 |
- 即梦ai高清封面导出攻略即梦ai缩略图生成教程
- 182浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 企业级AI证件照批量生成利器
- 249浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 即梦ai导出社交媒体,详解各平台适配格式
- 118浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- 企业级AI证件照批量生成利器
- 154浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 13次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 14次使用
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 41次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 38次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 36次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览