当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源

UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源

来源:51CTO.COM 2023-11-14 11:17:06 0浏览 收藏

从现在开始,我们要努力学习啦!今天我给大家带来《UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!

已经红遍半边天的扩散模型,将被淘汰了?

当前,生成式AI模型,比如GAN、扩散模型或一致性模型,通过将输入映射到对应目标数据分布的输出,来生成图像需要进行改写的内容是:

通常情况下,这种模型需要学习很多真实的图片,然后才能尽量保证生成图片的真实特征需要进行改写的内容是:

最近,来自UC伯克利和谷歌的研究人员提出了一种全新生成模型——幂等生成网络(IGN)需要进行改写的内容是:

UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源图片

论文地址:https://arxiv.org/abs/2311.01462

IGNs可以从各种各样的输入,比如随机噪声、简单的图形等,通过单步生成逼真的图像,并且不需要多步迭代需要进行改写的内容是:

这一模型旨在成为一个「全局映射器」(global projector),可以把任何输入数据映射到目标数据分布需要进行改写的内容是:

简言之,通用图像生成模型未来一定是这样的需要进行改写的内容是:

有趣的是,《宋飞正传》中一个高效的场景竟成为作者的灵感来源需要进行改写的内容是:

UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源图片

这个场景很好地总结了「幂等运算符」(idempotent operator)这一概念,是指在运算过程中,对同一个输入重复进行运算,得到的结果总是一样的需要进行改写的内容是:

UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源图片

需要进行改写的内容是:

正如Jerry Seinfeld幽默地指出的那样,一些现实生活中的行为也可以被认为是幂等的需要进行改写的内容是:

幂等生成网络

IGN与GAN、扩散模型有两点重要的不同之处:

- 与GAN不同的是,IGN无需单独的生成器和判别器,它是一个「自对抗」的模型,同时完成生成和判别需要进行改写的内容是:

- 与执行增量步骤的扩散模型不同,IGN尝试在单个步中将输入映射到数据分布需要进行改写的内容是:

IGN(幂等生成模型)的来源是什么?

它被训练为从源分布UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源给定输入样本的目标分布UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源,生成样本需要进行改写的内容是:

给定示例数据集UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源,每个示例均取自UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源需要进行改写的内容是:然后,研究人员训练模型UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源映射到UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源需要进行改写的内容是:

假设分布UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源位于同一空间,即它们的实例具有相同的维度需要进行改写的内容是:这允许将UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源应用于两种类型的实例UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源需要进行改写的内容是:

如图展示了IGN背后的基本思想:真实示例 (x) 对于模型 f 是不变的UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源需要进行改写的内容是:其他输入 (z) 被映射到f通过优化UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源映射到自身的实例流上需要进行改写的内容是:

UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源图片

IGN训练例程PyTorch代码的一部分示例需要进行改写的内容是:

UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源图片

实验结果

得到IGN后,效果如何呢?

作者承认,现阶段,IGN的生成结果无法与最先进的模型相竞争需要进行改写的内容是:

在实验中,使用的较小的模型和较低分辨率的数据集,并在探索中主要关注简化方法需要进行改写的内容是:

当然了,基础生成建模技术,如GAN、扩散模型,也是花了相当长的时间才达到成熟、规模化的性能需要进行改写的内容是:

实验设置

研究人员在MNIST(灰度手写数字数据集)和 CelebA(人脸图像数据集)上评估IGN,分别使用28×28和64×64的图像分辨率需要进行改写的内容是:

作者采用了简单的自动编码器架构,其中编码器是来自DCGAN的简单五层鉴别器主干,解码器是生成器需要进行改写的内容是:训练和网络超参数如表1所示需要进行改写的内容是:

UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源图片

生成结果

图4显示了应用模型一次和连续两次后两个数据集的定性结果需要进行改写的内容是:

如图所示,应用IGN 一次 (f (z)) 会产生相干生成结果需要进行改写的内容是:然而,可能会出现伪影,例如MNIST数字中的孔洞,或者面部图像中头顶和头发的扭曲像素需要进行改写的内容是:

再次应用 f (f (f (z))) 可以纠正这些问题,填充孔洞,或减少面部噪声斑块周围的总变化需要进行改写的内容是:

UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源图片

图7显示了附加结果以及应用f三次的结果需要进行改写的内容是:

UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源图片

比较UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源表明,当图像接近学习流形时,再次应用f会导致最小的变化,因为图像被认为是分布的需要进行改写的内容是:

潜在空间操纵

作者通过执行操作证明IGN具有一致的潜在空间,与GAN所示的类似,图6显示了潜在空间算法需要进行改写的内容是:

UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源图片

分布外映射

作者还验证通过将来自各种分布的图像输入到模型中以生成其等效的「自然图像」,来验证IGN「全局映射」的潜力需要进行改写的内容是:

研究人员通过对噪声图像x+n 进行去噪、对灰度图像UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源进行着色,以及将草图UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源转换为图5中的真实图像来证明这一点需要进行改写的内容是:

原始图像x,这些逆任务是不适定的需要进行改写的内容是:IGN能够创建符合原始图像结构的自然映射需要进行改写的内容是:

如图所示,连续应用f可以提高图像质量(例如,它消除了投影草图中的黑暗和烟雾伪影)需要进行改写的内容是:

UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源图片

谷歌下一步?

通过以上结果可以看出,IGN在推理方面更加有效,在训练后只需单步即可生成结果需要进行改写的内容是:

它们还可以输出更一致的结果,这可能推广到更多的应用中,比如医学图像修复需要进行改写的内容是:

论文作者表示:

我们认为这项工作是迈向模型的第一步,该模型学习将任意输入映射到目标分布,这是生成建模的新范式需要进行改写的内容是:

接下来,研究团队计划用更多的数据来扩大IGN的规模,希望挖掘新的生成式AI模型的全部潜力需要进行改写的内容是:

最新研究的代码,未来将在GitHub上公开需要进行改写的内容是:

参考文献:

https://assafshocher.github.io/IGN/

https://the-decoder.com/inspired-by-seinfeld-google-unveils-new-ai-model-for-image-generation/


到这里,我们也就讲完了《UC伯克利谷歌革新LLM,实现终结扩散模型并用于IGN单步生成逼真图像,美剧成为灵感来源》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于模型,扩散,IGN的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
重新表述的标题:魔兽世界第二专精(Demon Hunter 90专精)重新表述的标题:魔兽世界第二专精(Demon Hunter 90专精)
上一篇
重新表述的标题:魔兽世界第二专精(Demon Hunter 90专精)
关于网易云音乐冷启动技术的推荐系统
下一篇
关于网易云音乐冷启动技术的推荐系统
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 可图AI 2.0:快手旗下新一代图像生成大模型,专业创作者与普通用户的多模态创作引擎
    可图AI 2.0图片生成
    可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
    2次使用
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    23次使用
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    33次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    30次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    34次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码