利润预测不再困难,scikit-learn线性回归法让你事半功倍
怎么入门科技周边编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《利润预测不再困难,scikit-learn线性回归法让你事半功倍》,涉及到,有需要的可以收藏一下
1、简介
生成式人工智能无疑是一个改变游戏规则的技术,但对于大多数商业问题来说,回归和分类等传统的机器学习模型仍然是首选。
重写后的内容:设想一下私募股权或风险投资等投资者如何利用机器学习。要回答这个问题,首先需要了解投资者关注的数据以及数据的使用方式。投资公司的决策不仅仅基于可量化的数据,例如支出、增长和烧钱率等,还包括创始人的记录、客户反馈和产品体验等定性数据
本文将介绍线性回归的基础知识,可以在这里找到完整的代码。
需要重写的内容是:【代码】:https://github.com/RoyiHD/linear-regression
2、项目设置
本文将使用Jupyter Notebook进行这个项目。首先导入一些库。
导入库
# 绘制图表import matplotlib.pyplot as plt# 数据管理和处理from pandas import DataFrame# 绘制热力图import seaborn as sns# 分析from sklearn.metrics import r2_score# 用于训练和测试的数据管理from sklearn.model_selection import train_test_split# 导入线性模型from sklearn.linear_model import LinearRegression# 代码注释from typing import List
3、数据
为了简化问题,本文将使用区域数据。这些数据代表了公司的支出类别和利润。可以看到一些不同数据点的示例。本文希望使用支出数据来训练一个线性回归模型并预测利润。
重要的是要理解本文所描述的数据是关于一家公司的支出情况。只有当将支出数据与收入增长、当地税收、摊销和市场状况等数据结合起来时,才能得出有意义的预测能力
R&D Spend | 行政管理 | Marketing | 投资收益 |
需要进行重写的内容是:165349.2 | 136897.8 | 需要重写的内容是:471784.1 | 需要改写的内容是:192261.83 |
162597.7 | 需要被重写的内容是:151377.59 | 443898.53 | 191792.06 |
153441.51 | 101145.55 | 需要重新写作的内容是:407934.54 | 需要重写的是:191050.39 |
加载数据
companies: DataFrame = pd.read_csv("companies.csv", header = 0)
4、数据可视化
了解数据对于确定要使用的特征、需要进行归一化和转换的特征、从数据中删除异常值以及对特定数据点进行的处理是很重要的。
目标(利润)直方图
可以直接使用DataFrame绘制直方图(Pandas使用Matplotlib来绘制数据帧),可以直接访问利润并绘制它。
companies['Profit'].hist( color='g', bins=100);
图片
从数据中可以清楚地看出,利润超过20万美元的异常值非常罕见。这表明本文所涉及的数据代表的是规模较大的公司。鉴于异常值数量较少,可以将其保留
特征(支出)直方图
在这里,本文旨在使用特征的直方图,并观察其分布情况。Y轴表示数字频率,X轴表示支出
companies[["R&D Spend", "行政管理", "Marketing Spend"]].hist(figsize=(16, 20), bins=50, xlabelsize=8, ylabelsize=8)
图片
可以观察到一个健康的分布,只有很少的异常值。根据直觉,可以预期投入更多资金在研发和市场营销上的公司会获得更高的利润。从下面的散点图中可以看出,研发支出和利润之间存在明显的相关性
profits: DataFrame = companies[["Profit"]]research_and_development_spending: DataFrame = companies[["R&D Spend"]]figure, ax = plt.subplots(figsize = (9, 9))plt.xlabel("R&D Spending")plt.ylabel("Profits")ax.scatter(research_and_development_spending, profits, s=60, alpha=0.7, edgecolors="k",color='g',linewidths=0.5)
图片
可以使用相关的热图来进一步探索支出和利润之间的关系。从图中可以观察到研发和市场营销支出与利润之间的相关性比行政支出更高
sns.heatmap(companies.corr())
图片
5、模型训练
首先需要将数据集分割为训练集和测试集两部分。Sklearn提供了一个辅助方法来完成这个任务。鉴于本文的数据集很简单且足够小,可以按照以下方式将特征和目标分离开来。
数据集
features: DataFrame = companies[["R&D Spend", "行政管理", "Marketing Spend",]]targets: DataFrame = companies[["Profit"]]train_features, test_features, train_targets, test_targets = train_test_split(features, targets,test_size=0.2)
大多数数据科学家会使用不同的命名约定,如X_train、y_train或其他类似的变体。
模型训练
现在可以创建并训练模型了。Sklearn使事情变得非常简单。
model: LinearRegression = LinearRegression()model.fit(train_features, train_targets)
6、模型评估
本文希望对模型的性能及其可用性进行评估。首先查看一下计算得到的系数。在机器学习中,系数是用来与每个特征相乘的学习到的权重或数值。期望看到每个特征都有一个学习系数。
coefficients = model.coef_"""We should see the following in our consoleCoefficients[[0.55664299 1.08398919 0.07529883]]"""
正如上述所看到的,有3个系数,每个特征对应一个系数(“研发支出”、“行政支出”、“市场营销支出”)。还可以将其绘制成图表,以便更直观地了解每个系数。
plt.figure()plt.barh(train_features.columns, coefficients[0])plt.show()
图片
计算误差
希望了解模型的误差率,我们将使用Sklearn的R2得分
test_predictions: List[float] = model.predict(test_features)root_squared_error: float = r2_score(test_targets, test_predictions)"""floatWe should see an ouput similar to this0.9781424529214315"""
离1越近,模型就越准确。实际上可以用一种非常简单的方式对这一点进行测试。
使用下面的支出模型来预测利润,并希望得到一个接近192261美元的数字,可以提取数据集的第一行
"R&D Spend" |"行政管理" |"Marketing Spend" | "Profit"需要进行重写的内容是:165349.2 136897.8需要重写的内容是:471784.1需要改写的内容是:192261.83
接下来创建一个推理请求。
inference_request: DataFrame = pd.DataFrame([{"R&D Spend":需要进行重写的内容是:165349.2, "行政管理":136897.8, "Marketing Spend":需要重写的内容是:471784.1 }])
运行模型。
inference: float = model.predict(inference_request)"""We should get a number that is around199739.88721901"""
现在可以看到的误差率是abs(199739-192261)/192261=0.0388。这是非常准确的。
7、结论
处理数据、搭建模型和分析数据有很多方法。没有一种解决方案适用于所有情况,当用机器学习解决业务问题时,其中一个关键过程是搭建多个旨在解决同一个问题的模型,并选择最有前途的模型
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

- 上一篇
- 外媒:三星将推出AI实时通话翻译功能

- 下一篇
- 新技术装备:翼龙无人机、消防救援机器狗等成为应急救援的得力助手
-
- 科技周边 · 人工智能 | 3分钟前 |
- SQLServer2017AlwaysOnonLinux配置维护攻略
- 207浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 五大新能源车AEB测试,智界R7eAES功能突出
- 204浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 16次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 16次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 18次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 23次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 34次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览