别让大模型被基准评估坑了!测试集乱入预训练,分数虚高,模型变傻
科技周边小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《别让大模型被基准评估坑了!测试集乱入预训练,分数虚高,模型变傻》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!
“别让大模型被基准评估给坑了”。
这是一项最新研究的题目,来自人民大学信息学院、高瓴人工智能学院和伊利诺伊大学厄巴纳-香槟分校。
研究发现,基准测试中相关数据意外被用于模型训练的现象,变得越来越常见了。
因为预训练语料中包含很多公开文本资料,而评估基准也建立在这些信息之上,本来这种情况就在所难免。
现在随着大模型试图搜集更多公开数据,问题正在加重。
要知道,这种数据重叠带来的危害非常大。
不仅会导致模型部分测试分数虚高,还会使模型泛化能力下降、不相关任务表现骤降。甚至可能让大模型在实际应用中产生“危害”。
所以这项研究正式发出警告,并通过多项模拟测试验证了可能诱发的实际危害,具体来看。
大模型“被漏题”很危险
研究主要通过模拟极端泄露数据的情况,来测试观察大模型会产生的影响。
极端泄露数据的方式有四种:
- 使用MMLU的训练集
- 使用MMLU以外所有测试基准的训练集
- 使用所有训练集+测试prompt
- 使用所有训练集、测试集和测试prompt(这是最极端情况,仅为实验模拟,正常情况下不会发生)
然后研究人员给4个大模型进行“投毒”,然后再观察它们在不同benchmark中的表现,主要评估了在问答、推理、阅读理解等任务中的表现。
使用的模型分别是:
- GPT-Neo(1.3B)
- phi-1.5(1.3B)
- OpenLLaMA(3B)
- LLaMA-2(7B)
同时使用LLaMA(13B/30B/65B)作为对照组。
结果发现,当大模型的预训练数据中包含了某一个评测基准的数据,它会在这一评测基准中表现更好,但在其他不相关任务中的表现会下降。
比如使用MMLU数据集训练后,多个大模型在MMLU测试中分数提高的同时,在常识基准HSwag、数学基准GSM8K中分数下降。
这表明大模型的泛化能力受到影响。
另一方面,还可能造成不相关测试分数虚高。
如上给大模型进行“投毒”的四个训练集中仅包含少量中文数据,但是大模型被“投毒”后,在C3(中文基准测试)中的分数却都变高了。
这种升高是不合理的。
这种训练数据泄露的情况,甚至会导致模型测试分数,异常超越更大模型的表现。
比如phi-1.5(1.3B)在RACE-M和RACE-H上的表现优于LLaMA65B,后者是前者规模的50倍。
但这种分数升高没有意义,只是作弊罢了。
更严重的是,哪怕是没有被泄露数据的任务,也会受到影响,表现下降。
下表中可以看到,在代码任务HEval中,两个大模型都出现了分数大幅下降的情况。
同时被泄露数据后,大模型的微调提升远不如未被泄露情况。
对于发生数据重叠/泄露的情况,本项研究分析了各种可能。
比如大模型预训练语料和基准测试数据都会选用公开文本(网页、论文等),所以发生重叠在所难免。
而且当前大模型评估都是在本地进行,或者是通过API调用来获得结果。这种方式无法严格检查一些不正常的数值提升。
以及当下大模型的预训练语料都被各方视为核心机密,外界无法评估。
所以导致了大模型被意外“投毒”的情况发生。
那该如何规避这一问题呢?研究团队也出了一些建议。
如何规避?
研究团队给出了三点建议:
第一,实际情况中很难完全避免数据重叠,所以大模型应该采用多个基准测试进行更全面的评估。
第二,对于大模型开发者,应该要对数据进行脱敏,公开训练语料的详细构成。
第三,对于基准测试维护人员,应该提供基准测试数据来源,分析数据被污染的风险,使用更多样化的提示进行多次评估。
不过团队也表示本次研究中还存在一定局限。比如没有对不同程度数据泄露进行系统性测试,以及没能在预训练中直接引入数据泄露进行模拟等。
本次研究由中国人民大学信息学院、高瓴人工智能学院和伊利诺伊大学香槟分校的多位学者共同带来。
在研究团队中我们发现了两位数据挖掘领域大佬:文继荣和韩家炜。
文继荣教授现任中国人民大学高瓴人工智能学院院长、中国人民大学信息学院院长。主要研究方向为信息检索、数据挖掘、机器学习、大规模神经网络模型的训练与应用。
韩家炜教授领衔是数据挖掘领域专家,现为伊利诺伊大学香槟分校计算机系教授,美国计算机协会院士和IEEE院士。
论文地址:https://arxiv.org/abs/2311.01964。
到这里,我们也就讲完了《别让大模型被基准评估坑了!测试集乱入预训练,分数虚高,模型变傻》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于人工智能,大模型的知识点!

- 上一篇
- Arm 公布 IPO 后首份财报:营收 8 亿美元同比增 28%,业绩指引不及预期盘后跌 7%

- 下一篇
- 来聊聊近期火爆的几个大模型和自动驾驶概念
-
- 科技周边 · 人工智能 | 2分钟前 |
- Deepseek满血版搭配Writesonic大纲生成攻略
- 397浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 豆包大模型搭配AI书法工具设计字体教程
- 291浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- AI配音视频教程,零基础也能轻松上手
- 381浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 | AI语音 CanvaAI MagicDesign AI民间故事元素 WritewithAI
- CanvaAI添加民间故事元素教程
- 274浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- AI工具入门指南:从学习到实战全攻略
- 333浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- 理想MEGA八月交付破3000辆夺冠
- 220浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- AI Overviews怎么关?关闭方法与设置教程
- 379浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- GoogleAI视频生文怎么用?全步骤详解
- 493浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- PandaWiki开源知识库
- PandaWiki是一款AI大模型驱动的开源知识库搭建系统,助您快速构建产品/技术文档、FAQ、博客。提供AI创作、问答、搜索能力,支持富文本编辑、多格式导出,并可轻松集成与多来源内容导入。
- 341次使用
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 1124次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 1154次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 1158次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 1228次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览