当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 机器学习 | PyTorch简明教程上篇

机器学习 | PyTorch简明教程上篇

来源:51CTO.COM 2023-11-03 09:58:08 0浏览 收藏

一分耕耘,一分收获!既然都打开这篇《机器学习 | PyTorch简明教程上篇》,就坚持看下去,学下去吧!本文主要会给大家讲到等等知识点,如果大家对本文有好的建议或者看到有不足之处,非常欢迎大家积极提出!在后续文章我会继续更新科技周边相关的内容,希望对大家都有所帮助!

前面几篇文章介绍了特征归一化和张量,接下来开始写两篇PyTorch简明教程,主要介绍PyTorch简单实践。

1、四则运算

import torcha = torch.tensor([2, 3, 4])b = torch.tensor([3, 4, 5])print("a + b: ", (a + b).numpy())print("a - b: ", (a - b).numpy())print("a * b: ", (a * b).numpy())print("a / b: ", (a / b).numpy())

加减乘除就不用多解释了,输出为:

a + b:[5 7 9]a - b:[-1 -1 -1]a * b:[ 6 12 20]a / b:[0.6666667 0.750.8]

2、线性回归

线性回归是找到一条直线尽可能接近已知点,如图:

机器学习 | PyTorch简明教程上篇图1

import torchfrom torch import optimdef build_model1():return torch.nn.Sequential(torch.nn.Linear(1, 1, bias=False))def build_model2():model = torch.nn.Sequential()model.add_module("linear", torch.nn.Linear(1, 1, bias=False))return modeldef train(model, loss, optimizer, x, y):model.train()optimizer.zero_grad()fx = model.forward(x.view(len(x), 1)).squeeze()output = loss.forward(fx, y)output.backward()optimizer.step()return output.item()def main():torch.manual_seed(42)X = torch.linspace(-1, 1, 101, requires_grad=False)Y = 2 * X + torch.randn(X.size()) * 0.33print("X: ", X.numpy(), ", Y: ", Y.numpy())model = build_model1()loss = torch.nn.MSELoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 10for i in range(100):cost = 0.num_batches = len(X) // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer, X[start:end], Y[start:end])print("Epoch = %d, cost = %s" % (i + 1, cost / num_batches))w = next(model.parameters()).dataprint("w = %.2f" % w.numpy())if __name__ == "__main__":main()

(1)先从main函数开始,torch.manual_seed(42)用于设置随机数生成器的种子,以确保在每次运行时生成的随机数序列相同,该函数接受一个整数参数作为种子,可以在训练神经网络等需要随机数的场景中使用,以确保结果的可重复性;

(2)torch.linspace(-1, 1, 101, requires_grad=False)用于在指定的区间内生成一组等间隔的数值,该函数接受三个参数:起始值、终止值和元素个数,返回一个张量,其中包含了指定个数的等间隔数值;

(3)build_model1的内部实现:

  • torch.nn.Sequential(torch.nn.Linear(1, 1, bias=False))中使用nn.Sequential类的构造函数,将线性层作为参数传递给它,然后返回一个包含该线性层的神经网络模型;
  • build_model2和build_model1功能一样,使用add_module()方法向其中添加了一个名为linear的子模块;

(4)torch.nn.MSELoss(reductinotallow='mean')定义损失函数;

使用optim.SGD(model.parameters(), lr=0.01, momentum=0.9)可以实现随机梯度下降(Stochastic Gradient Descent,SGD)优化算法

将训练集通过批量大小拆分,循环100次

(7)接下来是训练函数train,用于训练一个神经网络模型,具体来说,该函数接受以下参数:

  • model:神经网络模型,通常是一个继承自nn.Module的类的实例;
  • loss:损失函数,用于计算模型的预测值与真实值之间的差异;
  • optimizer:优化器,用于更新模型的参数;
  • x:输入数据,是一个torch.Tensor类型的张量;
  • y:目标数据,是一个torch.Tensor类型的张量;

(8)train是PyTorch训练过程中常用的方法,其步骤如下:

  • 将模型设置为训练模式,即启用dropout和batch normalization等训练时使用的特殊操作;
  • 将优化器的梯度缓存清零,以便进行新一轮的梯度计算;
  • 将输入数据传递给模型,计算模型的预测值,并将预测值与目标数据传递给损失函数,计算损失值;
  • 对损失值进行反向传播,计算模型参数的梯度;
  • 使用优化器更新模型参数,以最小化损失值;
  • 返回损失值的标量值;

(9)print("轮次 = %d, 损失值 = %s" % (i + 1, cost / num_batches)) 最后打印当前训练的轮次和损失值,上述的代码输出如下:

...Epoch = 95, cost = 0.10514946877956391Epoch = 96, cost = 0.10514946877956391Epoch = 97, cost = 0.10514946877956391Epoch = 98, cost = 0.10514946877956391Epoch = 99, cost = 0.10514946877956391Epoch = 100, cost = 0.10514946877956391w = 1.98

3、逻辑回归

逻辑回归即用一根曲线近似表示一堆离散点的轨迹,如图:

机器学习 | PyTorch简明教程上篇图2

import numpy as npimport torchfrom torch import optimfrom data_util import load_mnistdef build_model(input_dim, output_dim):return torch.nn.Sequential(torch.nn.Linear(input_dim, output_dim, bias=False))def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples, n_features = trX.size()n_classes = 10model = build_model(n_features, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()

(1)先从main函数开始,torch.manual_seed(42)上面有介绍,在此略过;

(2)load_mnist是自己实现下载mnist数据集,返回trX和teX是输入数据,trY和teY是标签数据;

(3)build_model内部实现:torch.nn.Sequential(torch.nn.Linear(input_dim, output_dim, bias=False)) 用于构建一个包含一个线性层的神经网络模型,模型的输入特征数量为input_dim,输出特征数量为output_dim,且该线性层没有偏置项,其中n_classes=10表示输出10个分类; 重写后: (3)build_model内部实现:使用torch.nn.Sequential(torch.nn.Linear(input_dim, output_dim, bias=False)) 来构建一个包含一个线性层的神经网络模型,该模型的输入特征数量为input_dim,输出特征数量为output_dim,且该线性层没有偏置项。其中n_classes=10表示输出10个分类;

(4)其他的步骤就是定义损失函数,梯度下降优化器,通过batch_size将训练集拆分,循环100次进行train;

使用optim.SGD(model.parameters(), lr=0.01, momentum=0.9)可以实现随机梯度下降(Stochastic Gradient Descent,SGD)优化算法

(6)在每一轮训练结束后,需要执行predict函数来进行预测。该函数接受两个参数model(已经训练好的模型)和teX(需要进行预测的数据)。具体步骤如下:

  • model.eval()模型设置为评估模式,这意味着模型将不会进行训练,而是仅用于推理;
  • 将output转换为NumPy数组,并使用argmax()方法获取每个样本的预测类别;

(7)print("Epoch %d, cost = %f, acc = %.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))最后打印当前训练的轮次,损失值和acc,上述的代码输出如下(执行很快,但是准确率偏低):

...Epoch 91, cost = 0.252863, acc = 92.52%Epoch 92, cost = 0.252717, acc = 92.51%Epoch 93, cost = 0.252573, acc = 92.50%Epoch 94, cost = 0.252431, acc = 92.50%Epoch 95, cost = 0.252291, acc = 92.52%Epoch 96, cost = 0.252153, acc = 92.52%Epoch 97, cost = 0.252016, acc = 92.51%Epoch 98, cost = 0.251882, acc = 92.51%Epoch 99, cost = 0.251749, acc = 92.51%Epoch 100, cost = 0.251617, acc = 92.51%

4、神经网络

一个经典的LeNet网络,用于对字符进行分类,如图:

机器学习 | PyTorch简明教程上篇图3

  • 定义一个多层的神经网络
  • 对数据集的预处理并准备作为网络的输入
  • 将数据输入到网络
  • 计算网络的损失
  • 反向传播,计算梯度
import numpy as npimport torchfrom torch import optimfrom data_util import load_mnistdef build_model(input_dim, output_dim):return torch.nn.Sequential(torch.nn.Linear(input_dim, 512, bias=False),torch.nn.Sigmoid(),torch.nn.Linear(512, output_dim, bias=False))def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples, n_features = trX.size()n_classes = 10model = build_model(n_features, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()

(1)以上这段神经网络的代码与逻辑回归没有太多的差异,区别的地方是build_model,这里是构建一个包含两个线性层和一个Sigmoid激活函数的神经网络模型,该模型包含一个输入特征数量为input_dim,输出特征数量为output_dim的线性层,一个Sigmoid激活函数,以及一个输入特征数量为512,输出特征数量为output_dim的线性层;

(2)print("Epoch %d, cost = %f, acc = %.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))最后打印当前训练的轮次,损失值和acc,上述的代码输入如下(执行时间比逻辑回归要长,但是准确率要高很多):

第91个时期,费用= 0.054484,准确率= 97.58%第92个时期,费用= 0.053753,准确率= 97.56%第93个时期,费用= 0.053036,准确率= 97.60%第94个时期,费用= 0.052332,准确率= 97.61%第95个时期,费用= 0.051641,准确率= 97.63%第96个时期,费用= 0.050964,准确率= 97.66%第97个时期,费用= 0.050298,准确率= 97.66%第98个时期,费用= 0.049645,准确率= 97.67%第99个时期,费用= 0.049003,准确率= 97.67%第100个时期,费用= 0.048373,准确率= 97.68%


以上就是《机器学习 | PyTorch简明教程上篇》的详细内容,更多关于机器学习,PyTorch的资料请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
"英美中等28国就加强AI安全合作达成一致,以预防灾难性伤害"
上一篇
"英美中等28国就加强AI安全合作达成一致,以预防灾难性伤害"
让人工智能走入寻常百姓家 vivo推出自家研发的蓝心大模型
下一篇
让人工智能走入寻常百姓家 vivo推出自家研发的蓝心大模型
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    3次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    3次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    26次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    24次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    51次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码