当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

来源:51CTO.COM 2023-10-31 19:37:07 0浏览 收藏

哈喽!大家好,很高兴又见面了,我是golang学习网的一名作者,今天由我给大家带来一篇《使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习》,本文主要会讲到等等知识点,希望大家一起学习进步,也欢迎大家关注、点赞、收藏、转发! 下面就一起来看看吧!

强化学习(RL)是一种机器学习方法,它允许代理通过试错来学习如何在环境中表现。行为主体会因为采取行动导致预期结果而获得奖励或受到惩罚。随着时间的推移,代理会学会采取行动,以使得其预期回报最大化

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

RL代理通常使用马尔可夫决策过程(MDP)进行训练,MDP是为顺序决策问题建模的数学框架。MDP由四个部分组成:

  • 状态:环境的可能状态的集合。
  • 动作:代理可以采取的一组动作。
  • 转换函数:在给定当前状态和动作的情况下,预测转换到新状态的概率的函数。
  • 奖励函数:为每次转换分配奖励给代理的函数。

代理的目标是学习策略函数,将状态映射到动作。通过策略函数来最大化代理随着时间的预期回报。

Deep Q-learning是一种使用深度神经网络学习策略函数的强化学习算法。深度神经网络以当前状态作为输入,并输出一个值向量,其中每个值代表一个可能的动作。然后代理根据具有最高值的操作进行采取

Deep Q-learning是一种基于值的强化学习算法,这意味着它学习每个状态-动作对的值。状态-动作对的值是agent在该状态下采取该动作所获得的预期奖励。

Actor-Critic是一种结合了基于值和基于策略的RL算法。有两个组成部分:

Actor:参与者负责选择操作。

Critic:负责评价Actor的行为。

演员和评论家同时接受培训。演员接受培训以最大化预期奖励,评论家接受培训以准确预测每个状态-动作对的预期奖励

Actor-Critic算法相对于其他强化学习算法有几个优点。首先,它更加稳定,这意味着在训练过程中不太可能出现偏差。其次,它更加高效,这意味着它可以更快地学习。第三,它具有更好的可扩展性,可以应用于具有大型状态和操作空间的问题

下面的表格总结了Deep Q-learning和Actor-Critic之间的主要区别:

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

Actor-Critic (A2C)的优势

演员-评论家是一种受欢迎的强化学习体系结构,它结合了基于策略和基于价值的方法。它有许多优点,使其成为解决各种强化学习任务的强有力的选择:

1、低方差

相较于传统的策略梯度方法,A2C 在训练过程中通常具有较低的方差。这是因为 A2C 同时使用了策略梯度和值函数,在梯度的计算中利用值函数来降低方差。低方差表示训练过程更加稳定,能够更快地收敛到更优的策略

2、更快的学习速度

由于低方差的特性,A2C 通常能够以更快的速度学习到一个良好的策略。这对于那些需要进行大量模拟的任务来说尤为重要,因为较快的学习速度可以节省宝贵的时间和计算资源。

3、结合策略和值函数

A2C 的一个显著特点是它同时学习策略和值函数。这种结合使得代理能够更好地理解环境和动作的关联,从而更好地指导策略改进。值函数的存在还有助于减小策略优化中的误差,提高训练的效率。

4、支持连续和离散动作空间

A2C 可以适应不同类型的动作空间,包括连续和离散动作,而且非常通用。这就使得 A2C 成为一个广泛适用的强化学习算法,可以应用于各种任务,从机器人控制到游戏玩法优化

5、并行训练

A2C 可以轻松地并行化,充分利用多核处理器和分布式计算资源。这意味着可以在更短的时间内收集更多的经验数据,从而提高训练效率。

尽管Actor-Critic方法具有一些优势,但是它们也面临着一些挑战,比如超参数调优和训练中的潜在不稳定性。然而,通过适当的调整以及经验回放和目标网络等技术,这些挑战可以在很大程度上得到缓解,使得Actor-Critic成为强化学习中有价值的方法

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

panda-gym

panda-gym 基于 PyBullet 引擎开发,围绕 panda 机械臂封装了 reach、push、slide、pick&place、stack、flip 等 6 个任务,主要也是受 OpenAI Fetch 启发。

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

我们将使用panda-gym作为示例来展示下面的代码

1、安装库

首先,我们需要初始化强化学习环境的代码:

!apt-get install -y \libgl1-mesa-dev \libgl1-mesa-glx \libglew-dev \xvfb \libosmesa6-dev \software-properties-common \patchelf  !pip install \free-mujoco-py \pytorch-lightning \optuna \pyvirtualdisplay \PyOpenGL \PyOpenGL-accelerate\stable-baselines3[extra] \gymnasium \huggingface_sb3 \huggingface_hub \ panda_gym

2、导入库

import os  import gymnasium as gym import panda_gym  from huggingface_sb3 import load_from_hub, package_to_hub  from stable_baselines3 import A2C from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize from stable_baselines3.common.env_util import make_vec_env

3、创建运行环境

env_id = "PandaReachDense-v3"  # Create the env env = gym.make(env_id)  # Get the state space and action space s_size = env.observation_space.shape a_size = env.action_space  print("\n _____ACTION SPACE_____ \n") print("The Action Space is: ", a_size) print("Action Space Sample", env.action_space.sample()) # Take a random action

4、观察和奖励的规范化

强化学习优化的一个好方法是对输入特征进行归一化。我们通过包装器计算输入特征的运行平均值和标准偏差。同时还通过添加norm_reward = True来规范化奖励

env = make_vec_env(env_id, n_envs=4)  env = VecNormalize(env, norm_obs=True, norm_reward=True, clip_obs=10.)

5、创建A2C模型

我们使用Stable-Baselines3团队训练过的官方代理

model = A2C(policy = "MultiInputPolicy",env = env,verbose=1)

6、训练A2C

model.learn(1_000_000)  # Save the model and VecNormalize statistics when saving the agent model.save("a2c-PandaReachDense-v3") env.save("vec_normalize.pkl")

7、评估代理

from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize  # Load the saved statistics eval_env = DummyVecEnv([lambda: gym.make("PandaReachDense-v3")]) eval_env = VecNormalize.load("vec_normalize.pkl", eval_env)  # We need to override the render_mode eval_env.render_mode = "rgb_array"  # do not update them at test time eval_env.training = False # reward normalization is not needed at test time eval_env.norm_reward = False  # Load the agent model = A2C.load("a2c-PandaReachDense-v3")  mean_reward, std_reward = evaluate_policy(model, eval_env)  print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")

总结

在“panda-gym”将Panda机械臂和GYM环境有效的结合使得我们可以轻松的在本地进行机械臂的强化学习,

Actor-Critic架构中代理会学会在每个时间步骤中进行渐进式改进,这与稀疏的奖励函数形成对比(在稀疏的奖励函数中结果是二元的),这使得Actor-Critic方法特别适合于此类任务。

通过无缝结合策略学习和值估计,机器人代理能够熟练地操纵机械臂末端执行器,准确到达指定的目标位置。这不仅为机器人控制等任务提供了实用的解决方案,还具有改变各种需要敏捷和明智决策的领域的潜力


以上就是《使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习》的详细内容,更多关于机器学习,强化学习的资料请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
人工智能的未来:光学矩阵乘法的革命性影响人工智能的未来:光学矩阵乘法的革命性影响
上一篇
人工智能的未来:光学矩阵乘法的革命性影响
MATA,科学数据研究的人工智能助理,获得专利认可
下一篇
MATA,科学数据研究的人工智能助理,获得专利认可
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    12次使用
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    26次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    22次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    26次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    27次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码