当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA

像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA

来源:机器之心 2023-10-30 22:00:37 0浏览 收藏

你在学习科技周边相关的知识吗?本文《像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA》,主要介绍的内容就涉及到,如果你想提升自己的开发能力,就不要错过这篇文章,大家要知道编程理论基础和实战操作都是不可或缺的哦!

中山大学和华为等机构的研究人员提出了LEGO-Prover,实现了数学定理的全流程闭环,包括生成、整理、储存、检索和复用


背景

作为长链条严格推理的典范,数学推理被认为是衡量语言模型推理能力的重要基准,GSM8K 和 MATH 等数学文字问题(math word problem)数据集被广泛应用于语言模型的测评和比较中。事实上,数学作为一项科学研究并不仅仅包括计算具体实例,还包括推演一般性的定理。不同于简单的计算问题仅仅需要验证最终的结果与答案是否匹配,定理的证明要求对数学概念拥有更严格的理解,而这种定理证明的正确性是难以通过直接的自然语言生成和判别或是简单的程序调用就能够完成的。

正如自然语言处理希望能够使用计算机直接对人类语言进行数字化计算一样,对于数学对象的数字化也有着数十年的探索,甚至现代形式逻辑的诞生在很大程度上也正是源于对数学命题进行演算的想法。从事形式化验证的计算机科学家致力于为数学论述构造表达自然且计算高效的形式语言和证明验证器,人工编写的形式化数学代码在通过计算机的形式化验证后被认为具有高度的严格性。然而,这一过程需要大量的人工成本,著名的 Flyspeck project 甚至花费了二十年的时间才完成开普勒猜想的证明,而自动化的证明搜索算法则面临着搜索空间的组合爆炸问题,导致非平凡的定理证明往往超出了当前的计算能力限制。

深度学习的发展为形式化数学和自动定理证明提供了新的机遇。近年来,一种名为神经定理证明(neural theorem proving)的新范式以两种方式尝试将神经网络与形式定理证明相结合:使用神经网络对数学库中的定理和当前的证明目标分别进行向量表征并进行匹配,筛选出最可能被使用的定理,帮助纯符号计算的自动定理证明器缩小证明搜索空间;或者将证明目标作为提示输入语言模型,使其直接生成相应的形式化数学证明代码,再使用相应的形式化验证器来判断该证明的正确性,这种直接代替人类编码者完成主要证明内容书写的直接模式在大语言模型取得突破后备受关注。

然而,与数学文字问题一样,当前进行定理证明的方法通常是 “一次性的”,也即推理过程和中间结论仅仅作为通向最终证明的临时性路径,在完成证明的验证后即被丢弃、并不对后续的定理证明产生贡献。这种方式更像是对大语言模型进行静态测试,而没有对其能力的持续提升做出贡献。

事实上,数学的发展并不仅仅是简单的重复尝试解题,还包括从实例中「抽象」出普遍的数学结构和定理、从特殊的定理推广到一般的定理和根据已有的定理演绎地「推出」新的结论。

随着这一过程的演进,数学家对更复杂的问题拥有更强大的工具和更深刻的理解,最终才能解决先前无法解决的困难问题。

为了解决这一问题,模拟人类数学家在进行定理证明时通常进行的分解复杂问题、引用已有知识,并积累成功证明的新定理的迭代过程,中山大学和华为等机构的研究者提出了 LEGO-Prover,实现了数学定理的生成、整理、储存、检索和复用的全流程闭环。

LEGO-Prover 使 GPT-3.5 在形式化定理证明数据集 miniF2F-valid(证明成功率从 48.0% 提高到 57.0%)和 miniF2F-test(证明成功率从 45.5% 提高到 50.0%)上都达到了新的 SOTA。在证明过程中,LEGO-Prover 还成功地生成了超过 20,000 个引理并将它们添加到了不断增长的定理库中。

消融研究表明,这些新添加的技能确实对证明定理有帮助,在 miniF2F-valid 上的证明成功率从 47.1% 提高到 50.4%。

像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA

  • 论文地址:https://arxiv.org/abs/2310.00656
  • 代码地址:https://github.com/wiio12/LEGO-Prover

方法

像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA

像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA

LEGO-Prover 采取了一系列的流程来实现对定理证明的规划、实施和可复用定理库的收集:

1. 给定一个以自然语言描述的数学定理及其人类编写的形式化描述,使用 GPT-3.5(informal solver)直接生成的自然语言证明。
2. 使用分解器(decomposer)将这一自然语言证明分解为具体的证明步骤,并以引理的形式对这些证明步骤中的子目标进行对应的形式语言描述(作为检索的 request)。
3. 利用这些以形式语言描述的子目标尝试从定理库(也即 skill library)中检索相关的已证明定理,将其与上述内容一同输入 GPT-3.5(formalizer),在这些提示的基础上进行目标定理的形式化证明,并使用形式化验证器检验证明的正确性。
4. 从通过验证的形式化证明中,提取出除目标定理外的其他通过验证的定理(或引理)和在分解过程后得到的子目标形式语言描述,对它们进行 embedding 后加入到维护的定理库中。

此外,LEGO-Prover 还对定理库进行了专门的整理和维护流程,对分解过程中收集到的子目标进行单独的证明尝试,通过多种类别的 prompt 引导 GPT-3.5 对证明过程中收集到的成功证明的定理进行演化,从具体的证明实例抽象出一般的数学命题,以增进定理库中命题的多样性、概括性和可复用性:

像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA

实验

像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA

实验表明,这些演化得到的新定理在后续的定理证明中起到了关键性的作用,miniF2F 数据集中的许多定理都是在利用这些从定理库中抽取得到的结果才得以证明的。使用收集和演化得到的定理库后,LEGO-Prover 的证明成功率从 47.1% 提高到 50.4%,而在使用定理库的情形下,有 24% 的问题是在技能库的帮助下完成的,这表明技能库的使用对于大语言模型进行定理证明任务而言帮助很大。此外,使用定理库技术的优势在较小的尝试次数下具有较高的比例,表明这一方法对于计算资源相当有限的情形下具有相当可观的使用价值。

像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA

最后,实验结果表明 LEGO-Prover 在 miniF2F 数据集上的证明成功率显著优于基于先前的方法。使用人类编写的证明,LEGO-Prover 在验证集和测试集上的证明成功率分别比先前最好的方法高出 19% 和 3.5%。当使用模型生成的非正式证明替代人类编写的非正式证明时,LEGO-Prover 在验证集上的证明成功率仍然达到了 52.4%,接近于使用人类编写的非正式证明的证明成功率 55.3%。

像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA

LEGO-Prover 探索了如何以块状的方式证明定理。然而数据稀缺问题在定理证明这个领域内依旧非常严重。因此,与此同时,中山大学联合北京大学还推出了基于三角函数的定理证明基准数据集 TRIGO (https://arxiv.org/abs/2310.10180),发表于EMNLP 2023。

TRIGO 对自动引理生成以及如何从合成的引理数据的分布泛化到真实世界数据的分布进行了进一步的探索。当前的自动定理证明数据集主要侧重于符号推理,很少涉及复杂数字组合推理的理解。TRIGO 不仅要求模型通过逐步证明来简化三角函数表达式,还评估了生成式语言模型在公式和数字术语的操作、分组和因式分解方面的推理能力。研究团队从网络上收集了三角函数表达式及其简化形式,人工标注了简化过程,然后将其转化为 LEAN 形式系统下的语言。在有一定的来自于真实世界的形式化定理数据后,研究团队利用引理生成器,从已标注的样本中初始化 Lean-gym 来自动生成新的引理以扩展数据集。

此外,TRIGO 还开发了基于 lean-gym 的自动生成器,用以创建不同难度和分布的数据集拆分,以全面分析模型的泛化能力。TRIGO 在定理证明领域提供了新的挑战,同时也提供了一种研究生成式语言模型在形式和数学推理方面能力的新工具。

像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA

此外,为了探索定理证明模型的能力在更难的数据集上的表现,中山大学联合北京大学还提出了 FIMO 基准数据集(https://arxiv.org/abs/2309.04295)。形式化数学数据稀缺,手工形式化成本非常高昂。当前主流的数据集主要聚焦于初高中水平的应用题,难度普遍偏低,对于 IMO 等需要高水平解题技巧的数学竞赛题目关注较少,而且常常不包括自然语言题解。

针对现有数据集的问题,FIMO 探索了使用反馈信息的自动形式化方法,使用 GPT-4 和自动、手动两种反馈信息,将数量较为丰富的 IMO Shortlisted 候选题转换为了 Lean 语言描述的形式语言。

实验结果表明,反馈机制的加入大大缓解了先前自动形式化的语法错误和语义错误,显著提升了自动形式化的成功率(32.6%→60.8),成功形式化了 89 道代数和 60 道数论的高难度题目。进一步的实验表明,虽然 GPT-4 无法直接生成 IMO 级别题目的形式化题解,但是它可以跟随自然语言答案的解题思路,暗示了使用自然语言辅助机器定理证明的可能性。

到这里,我们也就讲完了《像搭乐高一样做数学定理证明题,GPT-3.5证明成功率达新SOTA》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于理论,LEGO-Prover的知识点!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
苹果文生图大模型亮相:俄罗斯套娃式扩散,支持1024x1024分辨率苹果文生图大模型亮相:俄罗斯套娃式扩散,支持1024x1024分辨率
上一篇
苹果文生图大模型亮相:俄罗斯套娃式扩散,支持1024x1024分辨率
陕西推进 IPv6 技术演进和应用创新发展,围绕技术体系、产业基础等六方面部署十五项重点任务
下一篇
陕西推进 IPv6 技术演进和应用创新发展,围绕技术体系、产业基础等六方面部署十五项重点任务
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    11次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    26次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    25次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    35次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码