如何在Python中构建一个简单的推荐系统
欢迎各位小伙伴来到golang学习网,相聚于此都是缘哈哈哈!今天我给大家带来《如何在Python中构建一个简单的推荐系统》,这篇文章主要讲到等等知识,如果你对文章相关的知识非常感兴趣或者正在自学,都可以关注我,我会持续更新相关文章!当然,有什么建议也欢迎在评论留言提出!一起学习!
如何在Python中构建一个简单的推荐系统
推荐系统是为了帮助人们发现和选择他们可能感兴趣的物品而设计的。Python提供了丰富的库和工具,可以帮助我们构建一个简单但有效的推荐系统。本文将介绍如何使用Python构建一个基于用户的协同过滤推荐系统,并提供具体的代码示例。
协同过滤是一种推荐系统的常见算法,它基于用户的行为历史数据来推断用户之间的相似性,然后利用这些相似性来预测和推荐物品。我们将使用MovieLens数据集,它包含了一组用户对电影的评分数据。首先,我们需要安装所需的库:
pip install pandas scikit-learn
接下来,我们将导入所需的库并加载MovieLens数据集:
import pandas as pd
from sklearn.model_selection import train_test_split
# 加载数据集
data = pd.read_csv('ratings.csv')该数据集包含userId、movieId和rating三列,分别表示用户ID、电影ID和评分。接下来,我们将数据集拆分为训练集和测试集:
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
现在,我们可以构建推荐系统了。这里我们将使用用户间的余弦相似度作为相似度度量指标。我们将创建两个字典来存储用户和电影的相似度得分:
# 计算用户之间的相似度
def calculate_similarity(train_data):
similarity = dict()
for user in train_data['userId'].unique():
similarity[user] = dict()
user_ratings = train_data[train_data['userId'] == user]
for movie in user_ratings['movieId'].unique():
similarity[user][movie] = 1.0
return similarity
# 计算用户之间的相似度得分
def calculate_similarity_score(train_data, similarity):
for user1 in similarity.keys():
for user2 in similarity.keys():
if user1 != user2:
user1_ratings = train_data[train_data['userId'] == user1]
user2_ratings = train_data[train_data['userId'] == user2]
num_ratings = 0
sum_of_squares = 0
for movie in user1_ratings['movieId'].unique():
if movie in user2_ratings['movieId'].unique():
num_ratings += 1
rating1 = user1_ratings[user1_ratings['movieId'] == movie]['rating'].values[0]
rating2 = user2_ratings[user2_ratings['movieId'] == movie]['rating'].values[0]
sum_of_squares += (rating1 - rating2) ** 2
similarity[user1][user2] = 1 / (1 + (sum_of_squares / num_ratings) ** 0.5)
return similarity
# 计算电影之间的相似度得分
def calculate_movie_similarity_score(train_data, similarity):
movie_similarity = dict()
for user in similarity.keys():
for movie in train_data[train_data['userId'] == user]['movieId'].unique():
if movie not in movie_similarity.keys():
movie_similarity[movie] = dict()
for other_movie in train_data[train_data['userId'] == user]['movieId'].unique():
if movie != other_movie:
movie_similarity[movie][other_movie] = similarity[user][other_user]
return movie_similarity
# 构建推荐系统
def build_recommendation_system(train_data, similarity, movie_similarity):
recommendations = dict()
for user in train_data['userId'].unique():
user_ratings = train_data[train_data['userId'] == user]
recommendations[user] = dict()
for movie in train_data['movieId'].unique():
if movie not in user_ratings['movieId'].unique():
rating = 0
num_movies = 0
for other_user in similarity[user].keys():
if movie in train_data[train_data['userId'] == other_user]['movieId'].unique():
rating += similarity[user][other_user] * train_data[(train_data['userId'] == other_user) & (train_data['movieId'] == movie)]['rating'].values[0]
num_movies += 1
if num_movies > 0:
recommendations[user][movie] = rating / num_movies
return recommendations
# 计算评价指标
def calculate_metrics(recommendations, test_data):
num_users = 0
sum_of_squared_error = 0
for user in recommendations.keys():
if user in test_data['userId'].unique():
num_users += 1
for movie in recommendations[user].keys():
if movie in test_data[test_data['userId'] == user]['movieId'].unique():
predicted_rating = recommendations[user][movie]
actual_rating = test_data[(test_data['userId'] == user) & (test_data['movieId'] == movie)]['rating'].values[0]
sum_of_squared_error += (predicted_rating - actual_rating) ** 2
rmse = (sum_of_squared_error / num_users) ** 0.5
return rmse
# 计算用户之间的相似度
similarity = calculate_similarity(train_data)
# 计算用户之间的相似度得分
similarity = calculate_similarity_score(train_data, similarity)
# 计算电影之间的相似度得分
movie_similarity = calculate_movie_similarity_score(train_data, similarity)
# 构建推荐系统
recommendations = build_recommendation_system(train_data, similarity, movie_similarity)
# 计算评价指标
rmse = calculate_metrics(recommendations, test_data)最后,我们可以输出推荐系统的结果和评价指标:
print(recommendations)
print('RMSE:', rmse)通过上述代码示例,我们在Python中成功构建了一个基于用户的协同过滤推荐系统,并计算了其评价指标。当然,这只是一个简单的示例,实际的推荐系统需要更复杂的算法和更大规模的数据集来获得更准确的推荐结果。
总结一下,Python提供了强大的库和工具来构建推荐系统,我们可以使用协同过滤算法来推断用户之间的相似性,并根据这些相似性来进行推荐。希望本文能够帮助读者理解如何在Python中构建一个简单但有效的推荐系统,并为进一步探索推荐系统的领域提供了一些思路。
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~
如何在Java中使用异常处理函数进行异常捕获和处理
- 上一篇
- 如何在Java中使用异常处理函数进行异常捕获和处理
- 下一篇
- 提升应用的可移植性与弹性:Docker和Spring Boot的最佳实践
-
- 文章 · python教程 | 46分钟前 |
- Python线程创建方法详解
- 299浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 蒙特卡洛算法原理及应用详解
- 412浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- OAuth2与Django用户绑定教程
- 247浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- 集合与列表的区别详解
- 422浏览 收藏
-
- 文章 · python教程 | 2小时前 | 正则表达式 空格 strip() Python字符串 split().join()
- Python字符串去空格技巧
- 284浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python搭建数据监控与报警系统教程
- 371浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python批量合并Excel表格方法
- 170浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python全局二值化方法全解析
- 438浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python错误捕获技巧分享
- 253浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python多线程join使用技巧详解
- 380浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3211次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3425次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3454次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4563次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3832次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

