当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

来源:51CTO.COM 2023-10-14 20:54:29 0浏览 收藏

知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个科技周边开发实战,手把手教大家学习《GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!

当前,大型语言模型(LLM)在推理任务上展示了惊人的能力,尤其是在提供样例和中间步骤的情况下。然而,prompt 方法通常依赖于LLM中的隐含知识,当隐含知识存在错误或与任务不一致时,LLM可能会给出错误的答案

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

现在,来自谷歌、Mila 研究所等研究机构的研究者们联合探索了一种新的方法 - 让LLM学习推理规则,并提出了一种名为假设到理论(Hypotheses-to-Theories,HtT)的新框架。这种新方法不仅改进了多步推理,还具有可解释性和可迁移性等优势

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

论文地址:https://arxiv.org/abs/2310.07064

根据对数值推理和关系推理问题的实验结果显示,HtT方法对现有的提示方法进行了改进,准确率提高了11-27%。同时,所学到的规则也可以迁移到不同的模型或同一问题的不同形式中

方法简介

总的来说,HtT 框架包含两个阶段 —— 归纳阶段和演绎阶段,类似于传统机器学习中的训练和测试。

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

在归纳阶段,LLM 首先需要生成并验证一组训练样例的规则。本研究采用 CoT 来声明规则并推导答案,评估规则的出现频率和准确性,收集经常出现且导致正确答案的规则,形成规则库

有了良好的规则库,下一步该研究如何应用这些规则来解决问题。为此,在演绎阶段,该研究在 prompt 中添加规则库,并要求 LLM 从规则库中检索规则来进行演绎,将隐式推理转换为显式推理。

然而,研究发现,即使是非常强大的LLM(例如GPT-4),也很难在每一步都检索到正确的规则。因此,该研究开发了XML标记技巧,以增强LLM的上下文检索能力

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

实验结果

为了评估 HtT,该研究针对两个多步骤推理问题进行了基准测试。实验结果表明,HtT 改进了少样本 prompt 方法。作者还进行了广泛的消融研究,以提供对 HtT 更全面的了解。

他们在数值推理和关系推理问题上评估新方法。在数值推理中,他们观察到 GPT-4 的准确率提高了 21.0%。在关系推理中,GPT-4 的准确性提高了 13.7%,GPT-3.5 则获益更多,性能提高了一倍。性能增益主要来自于规则幻觉的减少。

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

具体来说,下表 1 显示了在算术的 base-16、base-11 和 base-9 数据集上的结果。在所有 base 系统中,0-shot CoT 在两个 LLM 中的性能都最差。

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

表 2 呈现了在 CLUTRR 上比较不同方法的结果。可以观察到,在 GPT3.5 和 GPT4 中,0-shot CoT 的性能最差。对于 few-shot 提示方法,CoT 和 LtM 的性能相似。在平均准确率方面,HtT 始终比两种模型的提示方法高出 11.1-27.2%。值得注意的是,GPT3.5 在检索 CLUTRR 规则方面并不差,而且比 GPT4 从 HtT 中获益更多,这可能是因为 CLUTRR 中的规则比算术中的规则少。

值得一提的是,使用 GPT4 的规则,GPT3.5 上的 CoT 性能提高了 27.2%,是 CoT 性能的两倍多,接近 GPT4 上的 CoT 性能。因此,作者认为 HtT 可以作为从强 LLM 到弱 LLM 的一种新的知识蒸馏形式。

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

表 3 显示,HtT 显著提高了 GPT-4(文本版)的性能。对于 GPT3.5 来说,这种改进并不显著,因为在处理文本输入时,它经常产生除规则幻觉以外的错误。

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力

终于介绍完啦!小伙伴们,这篇关于《GPT-4通过DeepMind的训练,提高了13.7%的准确率,实现了更好的归纳和演绎能力》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
提升工程效率——增强检索生成(RAG)提升工程效率——增强检索生成(RAG)
上一篇
提升工程效率——增强检索生成(RAG)
AI应用“龙头”浮现:Adobe!
下一篇
AI应用“龙头”浮现:Adobe!
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 互联网信息服务算法备案系统:如何完成算法备案流程
    互联网信息服务算法备案系统
    了解互联网信息服务算法备案系统,掌握如何进行算法备案的详细步骤和要求,确保您的互联网服务合规运营。
    59次使用
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    104次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    137次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    266次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    125次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码