当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

来源:51CTO.COM 2023-10-15 14:11:21 0浏览 收藏

目前golang学习网上已经有很多关于科技周边的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键》,也希望能帮助到大家,如果阅读完后真的对你学习科技周边有帮助,欢迎动动手指,评论留言并分享~

大型语言模型(LLM 或 LM)最初用于生成语言,但随着时间的推移,它们已经能够生成多种模态的内容,并在音频、语音、代码生成、医疗应用、机器人学等领域开始占据主导地位

当然,LM 也能生成图像和视频。在此过程中,图像像素会被视觉 tokenizer 映射为一系列离散的 token。然后,这些 token 被送入 LM transformer,就像词汇一样被用于生成建模。尽管 LM 在视觉生成方面取得了显著进步,但 LM 的表现仍然不如扩散模型。例如,在图像生成的金标基准 —ImageNet 数据集上进行评估时,最佳语言模型的表现比扩散模型差了 48% 之多(以 256ˆ256 分辨率生成图像时,FID 为 3.41 对 1.79)。

为什么语言模型在视觉生成方面落后于扩散模型?来自谷歌、CMU 的研究者认为,主要原因是缺乏一个良好的视觉表示,类似于我们的自然语言系统,以有效地建模视觉世界。为了证实这一假设,他们进行了一项研究。

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

论文链接:https://arxiv.org/pdf/2310.05737.pdf

这项研究表明,在相同的训练数据、可比模型大小和训练预算条件下,利用良好的视觉 tokenizer,掩码语言模型在图像和视频基准的生成保真度和效率方面都超过了 SOTA 扩散模型。这是语言模型在标志性的 ImageNet 基准上击败扩散模型的首个证据。

需要强调的是,研究者的目的不是断言语言模型是否优于其他模型,而是促进 LLM 视觉 tokenization 方法的探索。LLM 与其他模型(如扩散模型)的根本区别在于,LLM 使用离散的潜在格式,即从可视化 tokenizer 获得的 token。这项研究表明,这些离散的视觉 token 的价值不应该被忽视,因为它们存在以下优势: 

1、与 LLM 的兼容性。token 表示的主要优点是它与语言 token 共享相同的形式,从而可以直接利用社区多年来为开发 LLM 所做的优化,包括更快的训练和推理速度、模型基础设施的进步、扩展模型的方法以及 GPU/TPU 优化等创新。通过相同的 token 空间统一视觉和语言可以为真正的多模态 LLM 奠定基础,后者可以在我们的视觉环境中理解、生成和推理。

2、压缩表示。离散 token 可以为视频压缩提供一个新的视角。可视化 token 可以作为一种新的视频压缩格式,以减少数据在互联网传输过程中占用的磁盘存储和带宽。与压缩的 RGB 像素不同,这些 token 可以直接输入生成模型,绕过传统的解压缩和潜在编码步骤。这可以加快生成视频应用的处理速度,在边缘计算情况下尤其有益。

3、视觉理解优势。以前的研究表明,在自监督表示学习中,将离散的标记作为预训练目标是有价值的,就像BEiT和BEVT中所讨论的那样。此外,研究发现,将标记用作模型输入可以提高其鲁棒性和泛化性能

在这篇论文中,研究者提出了一个名为MAGVIT-v2的视频分词器,旨在将视频(和图像)转化为紧凑的离散标记

该内容的重写如下:该模型是基于VQ-VAE框架内的SOTA视频tokenizer——MAGVIT进行的改进。研究人员提出了两种新技术:1)一种创新的无查找(lookup-free)量化方法,使得可以学习大量词汇,从而提高语言模型的生成质量;2)通过广泛的实证分析,他们确定了对MAGVIT的修改方案,不仅提升了生成质量,还允许使用共享词汇表对图像和视频进行token化

实验结果显示,新模型在三个关键领域优于之前表现最好的视频分词器——MAGVIT。首先,新模型显著提高了MAGVIT的生成质量,在常见的图像和视频基准上刷新了最佳结果。其次,用户研究表明,它的压缩质量超过了MAGVIT和当前的视频压缩标准HEVC。此外,它与下一代视频编解码器VVC相当。最后,研究者表明,与MAGVIT相比,他们的新的分词在两个设置和三个数据集的视频理解任务中表现更强

方法介绍

本文引入了一种新的视频 tokenizer,旨在将视觉场景中的时间 - 空间动态映射为适合语言模型的紧凑离散 token。此外,该方法建立在 MAGVIT 的基础上。

随后,该研究重点介绍了两种新颖的设计:无查找量化(Lookup-Free Quantization ,LFQ)和 tokenizer 模型的增强功能。

无查找量化

近期,VQ-VAE模型取得了巨大的进展,但是该方法存在一个问题,即重建质量的改进与后续生成质量之间的关系不明确。许多人错误地认为改进重建就等同于改进语言模型的生成,例如,扩大词汇量可以提高重建质量。然而,这种改进只适用于词汇量较小的生成,而当词汇量非常大时,会损害语言模型的性能

本文将 VQ-VAE codebook 嵌入维度缩减到 0 ,即 Codebook 在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键被替换为一个整数集在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键,其中在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

与 VQ-VAE 模型不同的是,这种新设计完全消除了对嵌入查找的需要,因此将其称为 LFQ。本文发现 LFQ 可以通过增加词汇量,提高语言模型的生成质量。如图 1 中的蓝色曲线所示,随着词汇量的增加,重建和生成都不断改进 —— 这是当前 VQ-VAE 方法中未观察到的特性。

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

到目前为止,可用的 LFQ 方法很多,但本文讨论了一种简单的变体。具体来说,LFQ 的潜在空间被分解为单维变量的笛卡尔积,即 在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键。假定给定一个特征向量在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键,量化表示  q (z) 的每个维度从以下获得:

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

关于LFQ,q(z)的令牌索引为:

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

除此以外,本文在训练过程中还增加了熵惩罚:

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

视觉 tokenizer 模型的改进

为了构建联合图像-视频分词器,需要进行重新设计。研究发现,与空间变换器相比,3D CNN的性能更优

本文探索了两种可行的设计方案,如图 2b 将 C-ViViT 与 MAGVIT 进行结合;图 2c 使用时间因果 3D 卷积来代替常规 3D CNN。 

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

表 5a 对图 2 中的设计进行了经验比较,发现因果 3D CNN 表现最好。

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

本文在提高MAGVIT性能方面进行了其他架构的修改。除了使用因果3D CNN层外,本文还将编码器下采样器从平均池化改为跨步卷积,并在解码器中每个分辨率的残差块之前添加了一个自适应组归一化层等

实验结果

本文通过三个部分的实验验证了所提出的分词器的性能:视频和图像生成、视频压缩和动作识别。图3直观地比较了分词器与先前研究结果的对比

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

视频生成。表 1 显示了本文模型在两个基准测试中都超越了所有现有技术,证明了良好的视觉 tokenizer 在使 LM 生成高质量视频方面发挥着重要作用。

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

以下是对图 4 的定性样本的描述

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

通过对MAGVIT-v2的图像生成结果进行评估,本研究在标准的ImageNet类条件设置下发现,我们的模型在采样质量(ID和IS)以及推理时间效率(采样步骤)方面都超过了最佳扩散模型的表现

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

图 5 为可视化结果。

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

视频压缩。结果如表 3 所示,本文模型在所有指标上都优于 MAGVIT,并且在 LPIPS 上优于所有方法。

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

根据表4所示,MAGVIT-v2在这些评估中表现优于之前最好的MAGVIT

在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键

理论要掌握,实操不能落!以上关于《在图像、视频生成上,语言模型首次击败扩散模型,tokenizer是关键》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
江西信丰:工业机器人助力企业提升质量和效率江西信丰:工业机器人助力企业提升质量和效率
上一篇
江西信丰:工业机器人助力企业提升质量和效率
人工智能新算法的惊人之处:准确预测地震的时间、位置和强度
下一篇
人工智能新算法的惊人之处:准确预测地震的时间、位置和强度
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    96次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    104次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    111次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    102次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    102次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码