逆向思维:MetaMath新数学推理语言模型训练大型模型
一分耕耘,一分收获!既然都打开这篇《逆向思维:MetaMath新数学推理语言模型训练大型模型》,就坚持看下去,学下去吧!本文主要会给大家讲到等等知识点,如果大家对本文有好的建议或者看到有不足之处,非常欢迎大家积极提出!在后续文章我会继续更新科技周边相关的内容,希望对大家都有所帮助!
复杂数学推理是评价大语言模型推理能力的重要指标,目前常用的数学推理数据集样本量有限且问题多样性不足,导致大语言模型存在 [逆转诅咒] 的现象,即一个训练于「A 是 B」的语言模型无法推广到「B 是 A」[1]。此现象在数学推理任务中的具体形式是:即给定一个数学问题,语言模型擅于用正向推理解答问题但缺乏逆向推理解决问题的能力。逆向推理在数学问题中十分常见,如下 2 个例子。
1. 经典问题 - 鸡兔同笼
- 正向推理:笼子里有 23 只鸡和 12 只兔,问笼子里有多少个头和多少只脚?
- 逆向推理:有若干只鸡兔同在一个笼子里,从上面数,有 35 个头,从下面数,有 94 只脚。问笼中各有多少只鸡和兔?
2. GSM8K 问题
- 正向推理: James buys 5 packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. How much did he pay?
- 逆向推理: James buys x packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. How much did he pay? If we know the answer to the above question is 110, what is the value of unknown variable x?
为了提升模型的正向和逆向推理能力,剑桥、港科大、华为的研究者基于两个常用的数学数据集(GSM8K 和 MATH)提出了 MetaMathQA 数据集:一个覆盖面广、质量高的数学推理数据集。MetaMathQA 由 395K 个大语言模型生成的正向逆向数学问答对组成。他们在 MetaMathQA 数据集上基于 LLaMA-2 微调得到专注于数学推理 (正向和逆向) 的大语言模型 MetaMath,在数学推理数据集上达到了 SOTA。MetaMathQA 数据集和不同规模的 MetaMath 模型已开源供研究人员使用。
- 项目地址:https://meta-math.github.io/
- 论文地址:https://arxiv.org/abs/2309.12284
- 数据地址:https://huggingface.co/datasets/meta-math/MetaMathQA
- 模型地址:https://huggingface.co/meta-math
- 代码地址:https://github.com/meta-math/MetaMath
在GSM8K-Backward数据集中,我们构建了一个逆向推理的实验。实验结果显示,与SFT、RFT和WizardMath等方法相比,目前的方法在逆向推理问题上表现较差。与之相反,MetaMath模型在正向和反向推理方面都取得了出色的性能
方法
MetaMathQA 包含了四种数据增强的方法:
1. Answer Augmentation (答案增强):给定问题,通过大语言模型生成能得到正确结果的思维链作为数据增广。
- Question: James buys 5 packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. How much did he pay?
- Answer: James buys 5 packs of beef that are 4 pounds each, so he buys a total of 5 * 4 = 20 pounds of beef. The price of beef is $5.50 per pound, so he pays 20 * $5.50 = $110. The answer is: 110.
2. Rephrasing Question (问题改写增强):给定元问题,通过大语言模型重写问题并生成得到正确结果的思维链作为数据增广。
- Question: What is the total amount that James paid when he purchased 5 packs of beef, each weighing 4 pounds, at a price of $5.50 per pound?
- Answer: Each pack of beef weighs 4 pounds, so 5 packs weigh 4 * 5 = 20 pounds in total. The price per pound of beef is $5.50, so the total cost for 20 pounds is 20 * $5.50 = $110. Therefore, James paid a total of $110. The answer is: 110.
3. FOBAR Question (FOBAR 逆向问题增强):给定元问题,通过掩码条件中的数字为 x,给定原有答案并反推 x 来产生逆向问题,并基于该逆向问题生成正确的思维链过程来进行数据增广(反推样例:“If we know the answer to the above question is 110, what is the value of unknown variable x?”)。
- Question: James buys x packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. How much did he pay? If we know the answer to the above question is 110, what is the value of unknown variable x?
- Answer: James buys x packs of beef that are 4 pounds each, so he buys a total of 4x pounds of beef. The price of beef is $5.50 per pound, so the total cost of the beef is 5.50 * 4x = 22x. We are given that the total cost is $110, so we can write: 22x = 110. Dividing both sides by 22, we get: x = 5. The value of x is 5.
4. Self-Verification Question (Self-Verification 逆向问题增强):在 FOBAR 的基础上,通过大语言模型改写逆向问题部分为陈述的语句来进行数据增广(改写样例:“How much did he pay?” (with the answer 110) 被改写成 “He paid 110”)。
- Question: James buys x packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. He paid 110. What is the value of unknown variable x?
- Answer: To solve this problem, we need to determine the value of x, which represents the number of packs of beef that James bought. Each pack of beef weighs 4 pounds and costs $5.50 per pound. The total amount James paid is $110. We can set up the equation as follows: Number of packs of beef * Weight per pack * Price per pound = Total amount paid; x * 4 * $5.50 = $110; Let's simplify and solve for x: 4x * $5.50 = $110; 22x = $110; To isolate x, we divide both sides of the equation by 22: 22x / 22 = $110 / 22; x = $5; The value of x is 5.
实验结果
在两个常见的数学推理数据集(GSM8K和MATH)的实验结果表明,MetaMath在性能上显著优于已有的开源LLM模型,而且不需要借助外部工具(例如代码解释器)。其中,我们的MetaMath-7B模型在GSM8K上达到了66.5%的准确率,在MATH上达到了19.8%的准确率,分别比相同规模的最先进模型高出11.6%和9.1%。特别值得一提的是,MetaMath-70B在GSM8K上达到了82.3%的准确率,超过了GPT-3.5-Turbo
根据《表面对齐假设》[2],大型语言模型的能力来自于预训练,而来自下游任务的数据则会激活预训练期间所学习到的语言模型的内在能力。因此,这引发了两个重要问题:(一)哪种类型的数据可以最有效地激活潜在知识,以及(二)为什么一个数据集在这种激活中比另一个数据集更好?
为什么 MetaMathQA 有用?提高了思维链数据的质量 (Perplexity)
根据上图所示,研究人员计算了 LLaMA-2-7B 模型在仅答案数据、GSM8K CoT 和 MetaMathQA 数据集的各个部分上的困惑度。MetaMathQA 数据集的困惑度明显低于其他两个数据集,这表明它具有较高的易学性,可能更有助于揭示模型的潜在知识
为什么 MetaMathQA 有用?增加了思维链数据的多样性 (Diversity)
通过比较数据的多样性增益和模型的准确率增益,研究人员发现,重新表述、FOBAR和SV的引入相同数量的增广数据都带来了明显的多样性增益,并显著提高了模型的准确率。相比之下,仅仅使用答案增强会导致准确率明显饱和。在准确率达到饱和后,增加AnsAug数据只会带来有限的性能提升
到这里,我们也就讲完了《逆向思维:MetaMath新数学推理语言模型训练大型模型》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于AI,模型的知识点!

- 上一篇
- 八钢公司引入105台“宝罗”机器人,智慧制造迈出坚实一步

- 下一篇
- 尼康发布尼克尔 Z 600mm f/6.3 VR S 远摄定焦镜头,售价为36499元
-
- 科技周边 · 人工智能 | 7分钟前 | 效率提升 代码生成 asyncio 豆包AI Python异步编程
- 豆包AI玩转Python异步编程,效率提升不止一点点!
- 150浏览 收藏
-
- 科技周边 · 人工智能 | 22分钟前 | 代码生成 代码检查 豆包AI Python异步编程 异步库
- 豆包AI带你手把手学Python异步编程,超简单!
- 194浏览 收藏
-
- 科技周边 · 人工智能 | 26分钟前 |
- 豆包AI手把手教你用Python解析XML文件,soeasy!
- 463浏览 收藏
-
- 科技周边 · 人工智能 | 28分钟前 | 台积电 半导体产业 亚利桑那州 SEMICONWest 芯片法案
- SEMICON首次亮相亚利桑那,SEMI强势入驻硅谷!
- 456浏览 收藏
-
- 科技周边 · 人工智能 | 35分钟前 |
- 豆包AI手把手教你写区块链智能合约!5大技巧打造安全Solidity代码
- 119浏览 收藏
-
- 科技周边 · 人工智能 | 38分钟前 |
- Midjourney+PS教程:手把手教你把AI生成的图调得超绝了
- 128浏览 收藏
-
- 科技周边 · 人工智能 | 46分钟前 |
- 豆包AI手把手教你用Python协程搞定异步编程
- 363浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 豆包AI手把手教你用Python协程搞定异步编程
- 234浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 96次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 101次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 108次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 102次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 102次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览