图像去雾技术中的雾气恢复问题
golang学习网今天将给大家带来《图像去雾技术中的雾气恢复问题》,感兴趣的朋友请继续看下去吧!以下内容将会涉及到等等知识点,如果你是正在学习科技周边或者已经是大佬级别了,都非常欢迎也希望大家都能给我建议评论哈~希望能帮助到大家!
图像去雾技术中的雾气恢复问题,需要具体代码示例
随着计算机视觉技术的不断发展,图像去雾技术逐渐得到广泛应用。在常规的摄影条件下,雾气的存在常常会导致图像质量下降,细节丢失等问题。因此,如何恢复图像中的雾气成为了研究的热点之一。
一般而言,图像去雾的目标是通过从有雾图像中估计并去除雾气散射,恢复出原始无雾图像。而图像去雾的核心问题则在于如何精确地估计雾气。
目前,图像去雾技术主要包括单幅图像去雾和多幅图像去雾两种方法。单幅图像去雾是指对一张有雾的图像直接进行去雾操作,而多幅图像去雾则是通过多个视角或时间序列的图像进行去雾。
在单幅图像去雾中,最常用的方法是利用大气散射模型来估计雾气。大气散射模型描述了雾气对光线的散射和吸收作用,如下所示:
I = J t + A (1 - t)
其中,I为测量的图像,J为原始的无雾图像,A为全局大气光照,t为雾浓度。图像去雾的目标是通过估计t和A来恢复J。
当然,大气散射模型假设了光线在整个场景中是匀速的,并且雾浓度是全局均匀的。然而,在现实场景中,这些假设常常不成立。因此,研究者们提出了许多改进的算法来应对这些问题。
下面给出一个具体的代码示例,展示了一种基于暗通道先验的图像去雾方法:
import numpy as np import cv2 def dark_channel(img, patch_size): min_channel = np.min(img, axis=2) return cv2.erode(min_channel, np.ones((patch_size, patch_size))) def atmospheric_light(img, dark_img, top_percentage): h, w = img.shape[:2] flattened_img = img.reshape(h*w, 3) flattened_dark = dark_img.flatten() top_num = int(h*w*top_percentage) indices = np.argpartition(flattened_dark, -top_num)[-top_num:] top_pixels = flattened_img[indices] atmospheric_light = np.max(top_pixels, axis=0) return atmospheric_light def transmission_map(img, atmosphere_light, omega, patch_size): img_normalized = img / atmosphere_light dark = dark_channel(img_normalized, patch_size) transmission = 1 - omega * dark return transmission def recover(img, transmission, atmosphere_light, omega): transmission_normalized = np.maximum(transmission, omega) recover = (img - atmosphere_light) / transmission_normalized + atmosphere_light return np.clip(recover, 0, 255).astype(np.uint8) def dehaze(img, omega=0.95, patch_size=15, top_percentage=0.001): dark = dark_channel(img, patch_size) atmospheric_light = atmospheric_light(img, dark, top_percentage) transmission = transmission_map(img, atmospheric_light, omega, patch_size) output = recover(img, transmission, atmospheric_light, omega) return output if __name__ == '__main__': img = cv2.imread('hazy_image.jpg') output = dehaze(img) cv2.imwrite('dehazed_image.jpg', output)
这段代码实现了一个基于暗通道先验的图像去雾方法。通过暗通道先验,可以估计出图像中的大气光照和透射率。然后,通过计算逆透射率来恢复出无雾图像。
当然,这只是一种方法的示例,图像去雾的方法有很多种。关于图像去雾更深入的研究和具体实现还有很多,读者可以根据需求和兴趣进一步探索和了解。
本篇关于《图像去雾技术中的雾气恢复问题》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

- 上一篇
- 语音情感识别技术中的口音差异问题

- 下一篇
- 图像去噪技术中的边缘保留问题
-
- 科技周边 · 人工智能 | 10小时前 |
- 小米SU7订单18万未交付,月产能暴增6倍
- 361浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 | iPhone17Pro 天蓝色 M4MacBookAir
- iPhone17Pro/ProMax弃钛金属,拥抱天蓝色
- 272浏览 收藏
-
- 科技周边 · 人工智能 | 13小时前 |
- 问界M8快报:MAX+版最火,BAL车主热捧
- 335浏览 收藏
-
- 科技周边 · 人工智能 | 15小时前 |
- 港大与Adobe联手推出PixelFlow图像生成模型
- 135浏览 收藏
-
- 科技周边 · 人工智能 | 17小时前 | 摩尔线程 招聘诈骗 @mthreads.com 官方客服 法律责任
- 摩尔线程重磅声明发布
- 406浏览 收藏
-
- 科技周边 · 人工智能 | 20小时前 |
- 玛莎拉蒂GT2Stradale国内首秀售414.5万
- 226浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 谱乐AI
- 谱乐AI是由青岛艾夫斯科技有限公司开发的AI音乐生成工具,采用Suno和Udio模型,支持多种音乐风格的创作。访问https://yourmusic.fun/,体验智能作曲与编曲,个性化定制音乐,提升创作效率。
- 2次使用
-
- Vozo AI
- 探索Vozo AI,一款功能强大的在线AI视频换脸工具,支持跨性别、年龄和肤色换脸,适用于广告本地化、电影制作和创意内容创作,提升您的视频制作效率和效果。
- 2次使用
-
- AIGAZOU-AI图像生成
- AIGAZOU是一款先进的免费AI图像生成工具,无需登录即可使用,支持中文提示词,生成高清图像。适用于设计、内容创作、商业和艺术领域,提供自动提示词、专家模式等多种功能。
- 2次使用
-
- Raphael AI
- 探索Raphael AI,一款由Flux.1 Dev支持的免费AI图像生成器,无需登录即可无限生成高质量图像。支持多种风格,快速生成,保护隐私,适用于艺术创作、商业设计等多种场景。
- 2次使用
-
- Canva可画AI生图
- Canva可画AI生图利用先进AI技术,根据用户输入的文字描述生成高质量图片和插画。适用于设计师、创业者、自由职业者和市场营销人员,提供便捷、高效、多样化的视觉素材生成服务,满足不同需求。
- 1次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览