当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > BEV下的Radar-Camera 融合跨数据集实验研究

BEV下的Radar-Camera 融合跨数据集实验研究

来源:51CTO.COM 2023-10-13 13:23:08 0浏览 收藏

最近发现不少小伙伴都对科技周边很感兴趣,所以今天继续给大家介绍科技周边相关的知识,本文《BEV下的Radar-Camera 融合跨数据集实验研究》主要内容涉及到等等知识点,希望能帮到你!当然如果阅读本文时存在不同想法,可以在评论中表达,但是请勿使用过激的措辞~

原标题:Cross-Dataset Experimental Study of Radar-Camera Fusion in Bird’s-Eye View
论文链接:https://arxiv.org/pdf/2309.15465.pdf
作者单位:Opel Automobile GmbH Rheinland-Pfalzische Technische Universitat Kaiserslautern-Landau German Research Center for Artificial Intelligence

BEV下的Radar-Camera 融合跨数据集实验研究

论文思路:

通过利用互补的传感器信息,毫米波雷达和相机融合系统具有潜力为先进的驾驶员辅助系统和自动驾驶功能提供高度稳健和可靠的感知系统。基于相机的目标检测的最新进展为毫米波雷达和相机的融合提供了新的可能性,可以利用鸟瞰特征图进行融合。本研究提出了一种新颖且灵活的融合网络,并在两个数据集(nuScenes 和 View-of-Delft)上评估了其性能。实验结果表明,虽然相机分支需要大量且多样化的训练数据,但毫米波雷达分支从高性能的毫米波雷达中受益更多。通过迁移学习,本研究提高了相机在较小数据集上的性能。研究结果进一步表明,毫米波雷达和相机的融合方法明显优于仅使用相机或仅使用毫米波雷达的基准方法

网络设计:

最近,3D目标检测的一个趋势是将图像的特征转换成一种常见的鸟瞰图(BEV)表示。这种表示方式提供了一种灵活的融合架构,可以在多个摄像头之间进行融合,也可以使用测距传感器进行融合。在这项工作中,我们扩展了原本用于激光摄像头融合的BEVFusion方法,用于毫米波雷达摄像头的融合。我们使用选定的毫米波雷达数据集对我们提出的融合方法进行了训练和评估。在几个实验中,我们讨论了每个数据集的优缺点。最后,我们应用迁移学习来实现进一步的改进

BEV下的Radar-Camera 融合跨数据集实验研究

以下是需要重新编写的内容: 图1展示了基于BEVFusion的BEV毫米波雷达-相机融合流程图。在生成的相机图像中,我们包括了投影毫米波雷达的探测结果和真实边界框

本文遵循BEVFusion的融合架构。图1展示了本文在BEV中进行毫米波雷达-camera融合的网络概况。请注意,融合发生时,camera和毫米波雷达特征在BEV连接。下面,本文将为每个区块提供进一步的细节。

需要重写的内容是:A.相机编码器和相机到BEV视图转换

camera编码器和视图变换采用了[15]的思想,它是一种灵活的框架,可以提取任意camera外部和内部参数的图像BEV特征。首先,使用tiny-Swin Transformer网络从每个图像中提取特征。接下来,本文利用[14]的 Lift 和 Splat 步骤将图像的特征转换到BEV平面。为此,密集深度预测之后是基于规则的block,其中的特征被转换成伪点云,并进行栅格化并累积到BEV网格中。

雷达柱特征编码器

此块的目的是将毫米波雷达点云编码到与图像BEV特征相同的网格上的BEV特征中。为此,本文使用了[16]的 pillar 特征编码技术,将点云光栅化为无限高的体素,即所谓的pillar。

需要重新写的内容是:C. BEV编码器

与[5]相似,毫米波雷达和相机的BEV特征是通过级联融合来实现的。融合后的特征由联合卷积BEV编码器处理,以便网络能够考虑空间错位并利用不同模态之间的协同效应

D. Detection Head

本文使用CenterPoint检测头来预测每个类的目标中心的热图。进一步的回归头预测物体的尺寸、旋转和高度,以及nuScenes的速度和类属性。而热图采用高斯焦点损失进行训练,其余的检测头采用L1损失进行训练

实验结果:

BEV下的Radar-Camera 融合跨数据集实验研究

BEV下的Radar-Camera 融合跨数据集实验研究

BEV下的Radar-Camera 融合跨数据集实验研究

引用:

Stäcker, L., Heidenreich, P., Rambach, J., & Stricker, D. (2023). 《鸟瞰视角下雷达-摄像头融合的跨数据集实验研究》. ArXiv. /abs/2309.15465

BEV下的Radar-Camera 融合跨数据集实验研究

需要重写的内容是:原文链接;https://mp.weixin.qq.com/s/5mA5up5a4KJO2PBwUcuIdQ

好了,本文到此结束,带大家了解了《BEV下的Radar-Camera 融合跨数据集实验研究》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
Adobe 引入 Stardust:AI 识别和编辑照片中的物体Adobe 引入 Stardust:AI 识别和编辑照片中的物体
上一篇
Adobe 引入 Stardust:AI 识别和编辑照片中的物体
房贷行业不知不觉中迎来了人工智能的奇妙融合
下一篇
房贷行业不知不觉中迎来了人工智能的奇妙融合
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    17次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    30次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    32次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    37次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    38次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码