当前位置:首页 > 文章列表 > 文章 > python教程 > Python脚本操作在Linux下实现系统性能监测与优化

Python脚本操作在Linux下实现系统性能监测与优化

2023-10-07 12:17:13 0浏览 收藏

今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《Python脚本操作在Linux下实现系统性能监测与优化》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!

Python脚本操作在Linux下实现系统性能监测与优化

在当前互联网时代,系统性能的稳定和优化是每个开发人员和系统管理员必不可少的工作。而在Linux系统中,Python作为一种简单易学的脚本语言,被广泛应用于系统性能监测与优化的工作中。

本文将介绍如何使用Python脚本在Linux系统下进行系统性能监测、分析及优化,并给出具体的代码示例。

一、系统性能监测

系统性能监测是了解系统在不同负载下的运行状态,并及时发现可能存在的性能瓶颈的重要手段。Python提供了丰富的库和工具来实现系统性能监测,下面我们将以一些常用的监测指标为例,介绍如何使用Python脚本进行系统性能监测。

  1. CPU利用率

CPU利用率是衡量系统性能的重要指标之一。可以使用psutil库来获取当前CPU的利用率,并使用matplotlib库实时绘制CPU利用率的变化曲线。

import psutil
import matplotlib.pyplot as plt

def get_cpu_usage():
    return psutil.cpu_percent()

def plot_cpu_usage():
    plt.axis([0, 100, 0, 1])
    plt.ion()
    while True:
        cpu_usage = get_cpu_usage()
        plt.scatter(cpu_usage, 0.5, c='r')
        plt.pause(1)
        plt.clf()

if __name__ == '__main__':
    plot_cpu_usage()
  1. 内存利用率

内存利用率是系统性能监测中另一个关键指标。可以使用psutil库来获取当前内存的利用率,并使用matplotlib库实时绘制内存利用率的变化曲线。

import psutil
import matplotlib.pyplot as plt

def get_memory_usage():
    return psutil.virtual_memory().percent

def plot_memory_usage():
    plt.axis([0, 100, 0, 1])
    plt.ion()
    while True:
        memory_usage = get_memory_usage()
        plt.scatter(memory_usage, 0.5, c='b')
        plt.pause(1)
        plt.clf()

if __name__ == '__main__':
    plot_memory_usage()
  1. 网络流量

网络流量监测是系统性能监测中的重要环节之一。可以使用psutil库来获取当前网络流量的情况,并使用matplotlib库实时绘制网络流量的变化曲线。

import psutil
import matplotlib.pyplot as plt

def get_network_usage():
    io_counters = psutil.net_io_counters()
    return io_counters.bytes_sent, io_counters.bytes_recv

def plot_network_usage():
    plt.axis([0, 10, 0, 1])
    plt.ion()
    while True:
        bytes_sent, bytes_recv = get_network_usage()
        plt.scatter(bytes_sent, 0.5, c='g')
        plt.scatter(bytes_recv, 0.5, c='y')
        plt.pause(1)
        plt.clf()

if __name__ == '__main__':
    plot_network_usage()

二、系统性能优化

系统性能优化是通过调整系统配置和优化代码来提升系统性能的行为。Python脚本可以在Linux系统下执行系统性能优化的相关工作,下面我们将以一些常见的优化方法为例,介绍如何使用Python脚本进行系统性能优化。

  1. CPU利用率优化

通过调整CPU调度策略来优化CPU利用率,可以使用Python脚本修改Linux系统的/proc/sys/kernel/sched_*相关参数。

def optimize_cpu_usage():
    with open('/proc/sys/kernel/sched_child_runs_first', 'w') as f:
        f.write('1')
    with open('/proc/sys/kernel/sched_child_runs_first', 'r') as f:
        print(f.read())

if __name__ == '__main__':
    optimize_cpu_usage()
  1. 内存利用率优化

通过调整进程内存分配的策略来优化内存利用率,可以使用Python脚本修改Linux系统的/proc/sys/vm/swappiness相关参数。

def optimize_memory_usage():
    with open('/proc/sys/vm/swappiness', 'w') as f:
        f.write('10')
    with open('/proc/sys/vm/swappiness', 'r') as f:
        print(f.read())

if __name__ == '__main__':
    optimize_memory_usage()
  1. 网络流量优化

通过调整网络传输协议和配置来优化网络流量,可以使用Python脚本修改Linux系统的/proc/sys/net/*相关参数。

def optimize_network_usage():
    with open('/proc/sys/net/ipv4/tcp_congestion_control', 'w') as f:
        f.write('bic')
    with open('/proc/sys/net/ipv4/tcp_congestion_control', 'r') as f:
        print(f.read())

if __name__ == '__main__':
    optimize_network_usage()

今天关于《Python脚本操作在Linux下实现系统性能监测与优化》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

优化Python脚本在Linux上的执行效率优化Python脚本在Linux上的执行效率
上一篇
优化Python脚本在Linux上的执行效率
我国海拔最高风电场 —— 措美哲古风电场二期项目全容量并网发电
下一篇
我国海拔最高风电场 —— 措美哲古风电场二期项目全容量并网发电
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    13次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    14次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    27次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    26次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    53次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码