当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑

深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑

来源:机器之心 2023-10-06 19:46:49 0浏览 收藏

golang学习网今天将给大家带来《深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑》,感兴趣的朋友请继续看下去吧!以下内容将会涉及到等等知识点,如果你是正在学习科技周边或者已经是大佬级别了,都非常欢迎也希望大家都能给我建议评论哈~希望能帮助到大家!

机器人技术为什么远远落后于自然语言处理(NLP)、视觉和其他人工智能领域?除了其他困难外,数据短缺是主要原因。为了解决这个问题,谷歌 DeepMind 联合其他机构推出了开放式 X-Embodiment 数据集,并成功训练出了更强大的 RT-X 模型

深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑
在大模型不断取得突破的 2023,把大模型当做大脑来辅助运行的具身智能机器人研究也在被迅速推进。

2 个多月前,谷歌 DeepMind 推出了第一个控制机器人的视觉 - 语言 - 动作(VLA)模型 ——RT-2。这个模型让机器人不仅能解读人类的复杂指令,还能看懂眼前的物体(即使这个物体之前从未见过),并按照指令采取动作。比如,你让机器人拿起桌上「已灭绝的动物」。它会抓起眼前的恐龙玩偶。

深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑

当时,一位谷歌高管称,RT-2 是机器人制造和编程方式的重大飞跃。「由于这一变化,我们不得不重新考虑我们的整个研究规划了。」

更令人吃惊的是,时间仅仅过去了两个多月,DeepMind 的这个机器人模型又进步了,而且一下就提高了两倍。

这是怎么实现的呢?

我们知道,机器人通常在做某一件事情上非常专业,但通用能力很差。一般情况下,你必须针对每项任务、每个机器人和环境训练一个模型。改变一个变量往往需要从头开始。但是,如果我们能将各种机器人学的知识结合起来,创造出一种训练通用机器人的方法呢?

这就是 DeepMind 在过去一段时间所做的事情。他们汇集了来自 22 种不同机器人类型的数据,以创建 Open X-Embodiment 数据集,然后在之前的模型(RT-1 和 RT-2)的基础上,训练出了能力更强的 RT-X(分别为 RT-1-X 和 RT-2-X)。

他们在五个不同的研究实验室测试了 RT-1-X 模型,结果显示,与针对每个机器人独立开发的方法相比,新方法在五种不同的常用机器人中平均成功率提高了 50%。他们还表明,在上述数据集上训练的 RT-2-X 在现实世界机器人技能上的表现提高了 2 倍,而且,通过学习新数据,RT-2-X 掌握了很多新技能。这项工作表明,在来自多个机器人类型数据上训练的单个模型比在来自单个机器人类型数据上训练的模型在多个机器人上的性能要好得多。

深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑

值得一提的是,这项研究并非由 DeepMind 独立完成,而是他们与 33 家学术实验室通力合作的结果。他们致力于以开放和负责任的方式开发这项技术。
深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑
目前,Open X-Embodiment 数据集和 RT-1-X 模型检查点已经对广泛的研究社区开放。
深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑
英伟达高级人工智能科学家Jim Fan表示今天可能是机器人的ImageNet时刻。

深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑

谷歌研究员Karol Hausman也表达了同样的感叹:机器人的ImageNet时刻终于到来了。

深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑

Open X-Embodiment 数据集,机器人的 ImageNet 时刻

数据集以及基于数据集训练的模型在推进 AI 进步方面发挥了关键作用。正如 ImageNet 推动了计算机视觉的研究,Open X-Embodiment 同样推动了机器人技术的发展。 

一直以来,构建多样化数据集是训练通用模型的关键,这些训练好的模型可以控制许多不同类型的机器人,遵循不同的指令,对复杂任务进行基本推理,并有效地进行泛化。然而,对于任何单个实验室来说,收集这样的数据集都过于耗费资源。

为此,DeepMind 与 33 家机构的学术研究实验室展开合作,从而构建了 Open X-Embodiment 数据集。他们从 22 个机器人实例中收集数据,这些数据涵盖超过 100 万个片段,展示了机器人 500 多项技能和在 150000 项任务上的表现。该数据集是同类中最全面的机器人数据集。
深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑
                                来自 Open X-Embodiment 数据集的样本,包括 500 多种技能和 150000 个任务。
深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑
                                                       Open X-Embodiment 基本信息

RT-1-X:成功率提升 50%

RT-X 基于两个 robotics transformer(RT)模型构建而成。

具体而言,他们使用 RT-1 训练 RT-1-X,其中 RT-1 是建立在 Transformer 架构上的 35M 参数网络,专为机器人控制而设计,如图 3 所示。

此外,他们还在 RT-2 上训练 RT-2-X,其中 RT-2 是一系列大型视觉语言动作模型 (VLA),在互联网规模的视觉和语言数据以及机器人控制数据上训练而成。
深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑
为了评估 RT-1-X,DeepMind 将其与在特定任务上(例如开门)开发的模型进行了比较。结果显示,使用 Open X-Embodiment 数据集训练的 RT-1-X 平均性能优于原始模型 50%。
深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑
                                       RT-1-X 平均成功率比原始方法提高 50%。

深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑

                                      来自不同合作机构的关于 RT-1-X 的效果展示

RT-2-X:无障碍解锁新技能

为了研究 RT-X 的知识迁移能力,DeepMind 又进行了其他实验。这些实验涉及 RT-2 数据集中不存在的对象和技能,但这些对象和技能存在于另一个机器人的数据集中。结果表明,在掌握新技能方面,RT-2-X 的成功率是其之前的最佳模型 RT-2 的三倍。这也说明了,与其他平台的数据进行联合训练可以为 RT-2-X 赋予原始数据集中不存在的额外技能,使其能够执行新颖的任务。
深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑
                                                      上图展示了 RT-2-X 对物体之间空间关系的理解。

深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑

一系列结果表明,RT-2-X 实现了 RT-2 以前无法实现的技能,包括对空间更好的理解。例如,如果我们要求机器人「将苹果移动到布料附近」、又或者要求机器人「将苹果移动到布料上」,为了实现目标要求,机器人会采取完全不同的轨迹。只需将介词从「near」更改为「on」,就可以调整机器人采取的动作。

RT-2-X 表明,将其他机器人的数据结合到 RT-2-X 训练中可以改善机器人的任务执行范围,但前提是使用足够高容量的架构。

深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑

                             RT-2-X (55B): 迄今为止在学术实验室执行未知任务的最大模型之一

研究启发:机器人需要相互学习,研究人员也一样

机器人研究正处于令人兴奋的早期阶段。DeepMind 的这项新研究表明,通过利用更多样化的数据和更好的模型进行扩展学习,有可能开发出更有用的辅助机器人。与世界各地的实验室合作并共享资源,对于以开放和负责任的方式推进机器人研究至关重要。DeepMind 希望通过开放数据源和提供安全但有限的模型来减少障碍,加快研究。机器人技术的未来有赖于机器人之间的相互学习,最重要的是,让研究人员能够相互学习。

这项工作证明,模型可以在不同环境下通用,无论是在谷歌 DeepMind 的机器人上,还是在世界各地不同大学的机器人上,其性能都得到了显著提高。未来的研究可以探索如何将这些进步与 RoboCat 的自我完善特性相结合,使模型能够根据自身经验不断改进。未来的另一个方向是进一步探索不同数据集的混合会如何影响跨具身智能体泛化,以及这种泛化是如何是实现的。

如果你想了解有关 RT-X 的更多信息,可以参考 DeepMind 发布的这篇论文:
深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑
  • 论文链接:https://robotics-transformer-x.github.io/paper.pdf
  • 项目链接:https://robotics-transformer-x.github.io/

参考链接:https://www.deepmind.com/blog/scaling-up-learning-across-many-different-robot-types

以上就是《深度学习巨头DeepMind在ImageNet数据集上取得突破性进展,为机器人研究带来新的里程碑》的详细内容,更多关于产业,RT-X,Open X-Embodiment的资料请关注golang学习网公众号!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
Unknown column type 'column_type' in column 'column_name' - 如何解决MySQL报错:列中的未知列类型Unknown column type 'column_type' in column 'column_name' - 如何解决MySQL报错:列中的未知列类型
上一篇
Unknown column type 'column_type' in column 'column_name' - 如何解决MySQL报错:列中的未知列类型
在Linux系统中使用Python脚本操作MySQL数据库的方法
下一篇
在Linux系统中使用Python脚本操作MySQL数据库的方法
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    19次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    36次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    38次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    45次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    44次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码