当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFill

真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFill

来源:机器之心 2023-10-06 23:15:12 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

小伙伴们有没有觉得学习科技周边很有意思?有意思就对了!今天就给大家带来《真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFill》,以下内容将会涉及到,若是在学习中对其中部分知识点有疑问,或许看了本文就能帮到你!

得到一张好看的照片越来越容易了。

假期出游,肯定少不了拍照留念。不过,大部分在景区拍摄的照片或多或少都有些遗憾,背景里不是多了些什么,就是少了些什么。

获得一张「完美」的图像,是 CV 研究人员长期以来努力的目标之一。日前,Google Research 和康奈尔大学的研究人员合作,提出了一种「真实的图像补全」(Authentic Image Completion)技术——用于图像补全的生成模型 RealFill。

RealFill 模型的优势是可以使用少量的场景参考图像进行个性化设置,而这些参考图像无须与目标图像对齐,甚至可以在视角、光线条件、相机光圈或图像风格等方面有极大的差异。一旦完成个性化设置,RealFill 就能够以忠实于原始场景的方式,用视觉上引人入胜的内容来补全目标图像。

真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFill

  • 请点击以下链接查看论文:https://arxiv.org/abs/2309.16668

  • 项目页面链接:https://realfill.github.io/

补画(inpainting)和扩画(outpainting)模型是能够在图像的未知区域生成高质量、合理的图像内容的技术,但这些模型生成的内容必然是不真实的,因为这些模型在真实场景的上下文信息方面存在不足。相比之下,RealFill 能够生成「应该」出现在那里的内容,从而使图像补全的结果更为真实。

作者在论文中指出,他们定义了一个新的图像补全问题——「真实图像补全」(Authentic Image Completion)。不同于传统的生成型图像修复(替代缺失区域的内容可能与原始场景不一致),真实图像补全的目标是使补全的内容尽可能忠实于原始场景,用「应该出现在那里」的内容来补全目标图像,而不是用「可能在那里」的内容。

作者表示,RealFill 是首个通过在过程中添加更多的条件(即添加参考图像)来扩展生成型图像修复模型表达力的方法。

在一个涵盖了一系列多样化且具有挑战性的场景的新的图像补全基准测试中,RealFill 的表现大大超过了现有的方法。

方法

RealFill 的目标是在尽可能保持真实性的前提下,使用少量的参考图像来补全给定目标图像的缺失部分。具体说,给定最多 5 张参考图像,和一张大致捕捉到相同场景(但布局或外观可能不同)的目标图像。

对于给定的场景,研究人员首先通过在参考图像和目标图像上微调一个预训练的 inpainting 扩散模型,创建一个个性化的生成模型。这个微调过程被设计成让微调后的模型不仅保持良好的图像先验,还能学习输入图像中的场景内容、光照和风格。然后,使用这个微调过的模型,通过标准的扩散采样过程来填充目标图像中的缺失区域。真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFill

值得注意的是,为了实际的应用价值,该模型特别关注更具挑战性、无约束的情况,即目标图像和参考图像可能有非常不同的视点、环境条件、相机光圈、图像风格,甚至包括移动的对象。

实验结果

根据左侧的参考图像,RealFill 能够对右侧的目标图像进行扩展(uncrop)或修复(inpaint),生成的结果不仅视觉上吸引人,而且与参考图像保持一致,即使参考图像和目标图像在视点、光圈、光照、图像风格和物体运动等方面存在较大差异。

真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFill真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFill

真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFill

真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFillRealFill 模型的输出效果。给定左侧的参考图像,RealFill 能够扩画出对应的右侧目标图像。白色框内的区域被提供给网络作为已知的像素,而白色框外的区域都是生成的。结果显示,即使参考图像和目标图像之间存在包括视点、光圈、光照、图像风格和物体运动等巨大差异,RealFill 也能生成高质量且忠实于参考图像的图像。来源:论文

对照实验

研究人员比较了 RealFill 模型和其他的基准方法。相比之下,RealFill 生成的结果质量高,在场景保真度和与参考图像的一致性方面,RealFill的表现更好。

Paint-by-Example 无法实现高度的场景保真,因为它依赖于 CLIP 嵌入,而 CLIP 嵌入只能捕获高级语义信息。

Stable Diffusion Inpainting 虽然可以产生看似合理的结果,但由于 prompt 的表达能力有限,所以最终生成结果与参考图像并不一致。

真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFill

RealFill 与其他两种基线方法的比较。覆盖了一层透明白色掩码的区域是目标图像未修改的部分。来源:realfill.github.io

局限

研究人员也讨论了 RealFill 模型的一些潜在的问题和限制,包括处理速度、对视点变化的处理能力,以及对基础模型具有挑战性的情况的处理能力。具体说:

RealFill 需要对输入图像进行基于梯度的微调过程,这使得它的运行速度相对较慢。
当参考图像和目标图像之间的视点变化非常大时,RealFill 往往无法恢复 3D 场景,特别是当只有一张参考图像的时候。

由于 RealFill 主要依赖于从基础的预训练模型继承的图像先验,因此它无法处理那些对基础模型来说具有挑战性的情况,例如 stable diffusion 模型无法处理好文本。

真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFill

最后,作者向合作者表达了感激之情:

我们要感谢 Rundi Wu、Qianqian Wang、Viraj Shah、Ethan Weber、Zhengqi Li、Kyle Genova、Boyang Deng、Maya Goldenberg、Noah Snavely、Ben Poole、Ben Mildenhall、Alex Rav-Acha、Pratul Srinivasan、Dor Verbin 和 Jon Barron 的宝贵讨论和反馈,同时也感谢 Zeya Peng、Rundi Wu、Shan Nan 对评估数据集的贡献。我们特别感谢 Jason Baldridge、Kihyuk Sohn、Kathy Meier-Hellstern 和 Nicole Brichtova 对项目的反馈和支持。

请阅读原始论文并访问项目主页以获取更多信息

理论要掌握,实操不能落!以上关于《真实性震撼!谷歌和康奈尔大学推出真实图像补全技术RealFill》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
亚运会惊现AI解说员,机器人为残障者导览引路,北大学生为亚运会研发黑科技亚运会惊现AI解说员,机器人为残障者导览引路,北大学生为亚运会研发黑科技
上一篇
亚运会惊现AI解说员,机器人为残障者导览引路,北大学生为亚运会研发黑科技
扎克伯格在元宇宙里一小时的「真人对话」,惊艳了全世界
下一篇
扎克伯格在元宇宙里一小时的「真人对话」,惊艳了全世界
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3214次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3429次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3459次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4567次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3835次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码