当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 处理不平衡数据的十大Python库

处理不平衡数据的十大Python库

来源:51CTO.COM 2023-10-11 23:11:30 0浏览 收藏

学习科技周边要努力,但是不要急!今天的这篇文章《处理不平衡数据的十大Python库》将会介绍到等等知识点,如果你想深入学习科技周边,可以关注我!我会持续更新相关文章的,希望对大家都能有所帮助!

数据不平衡是机器学习中一个常见的挑战,其中一个类的数量明显超过其他类,这可能导致有偏见的模型和较差的泛化。有各种Python库来帮助有效地处理不平衡数据。在本文中,我们将介绍用于处理机器学习中不平衡数据的十大Python库,并为每个库提供代码片段和解释。

处理不平衡数据的十大Python库

1、imbalanced-learn

imbalanced-learn是scikit-learn的一个扩展库,旨在提供多种数据集重新平衡的技术。该库提供了过采样、欠采样和组合方法等多种选项

 from imblearn.over_sampling import RandomOverSampler  ros = RandomOverSampler() X_resampled, y_resampled = ros.fit_resample(X, y)

2、SMOTE

SMOTE生成合成样本来平衡数据集。

from imblearn.over_sampling import SMOTE  smote = SMOTE() X_resampled, y_resampled = smote.fit_resample(X, y)

3、ADASYN

ADASYN根据少数样本的密度自适应生成合成样本。

from imblearn.over_sampling import ADASYN  adasyn = ADASYN() X_resampled, y_resampled = adasyn.fit_resample(X, y)

4、RandomUnderSampler

RandomUnderSampler随机从多数类中移除样本。

from imblearn.under_sampling import RandomUnderSampler  rus = RandomUnderSampler() X_resampled, y_resampled = rus.fit_resample(X, y)

5、Tomek Links

Tomek Links可以移除的不同类的最近邻居对,减少多样本的数量

 from imblearn.under_sampling import TomekLinks  tl = TomekLinks() X_resampled, y_resampled = tl.fit_resample(X, y)

6、SMOTEENN (SMOTE +Edited Nearest Neighbors)

SMOTEENN结合SMOTE和Edited Nearest Neighbors。

 from imblearn.combine import SMOTEENN  smoteenn = SMOTEENN() X_resampled, y_resampled = smoteenn.fit_resample(X, y)

7、SMOTETomek (SMOTE + Tomek Links)

SMOTEENN结合SMOTE和Tomek Links进行过采样和欠采样。

 from imblearn.combine import SMOTETomek  smotetomek = SMOTETomek() X_resampled, y_resampled = smotetomek.fit_resample(X, y)

8、EasyEnsemble

EasyEnsemble是一种集成方法,可以创建多数类的平衡子集。

 from imblearn.ensemble import EasyEnsembleClassifier  ee = EasyEnsembleClassifier() ee.fit(X, y)

9、BalancedRandomForestClassifier

BalancedRandomForestClassifier是一种将随机森林与平衡子样本相结合的集成方法。

 from imblearn.ensemble import BalancedRandomForestClassifier  brf = BalancedRandomForestClassifier() brf.fit(X, y)

10、RUSBoostClassifier

RUSBoostClassifier是一种结合随机欠采样和增强的集成方法。

from imblearn.ensemble import RUSBoostClassifier  rusboost = RUSBoostClassifier() rusboost.fit(X, y)

总结

处理不平衡数据对于建立准确的机器学习模型至关重要。这些Python库提供了各种技术来应对这一问题。根据你的数据集和问题,可以选择最合适的方法来有效地平衡数据。

今天关于《处理不平衡数据的十大Python库》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于Python,机器学习,数据不平衡的内容请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
DeepMind的Demis Hassabis:对Isomorphic的愿景,以及生命科学领域AI的未来DeepMind的Demis Hassabis:对Isomorphic的愿景,以及生命科学领域AI的未来
上一篇
DeepMind的Demis Hassabis:对Isomorphic的愿景,以及生命科学领域AI的未来
利用高斯混合模型对多模态分布进行分解
下一篇
利用高斯混合模型对多模态分布进行分解
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    45次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    65次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    75次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    69次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    72次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码