如何用Python for NLP从PDF文件中提取结构化的信息?
今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《如何用Python for NLP从PDF文件中提取结构化的信息?》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!
如何用Python for NLP从PDF文件中提取结构化的信息?
一、引言
随着大数据时代的到来,海量的文本数据正在不断积累,这其中包括了大量的PDF文件。然而,PDF文件是一种二进制格式,不易直接提取其中的文本内容和结构化信息。本文将介绍如何使用Python及相关的自然语言处理(NLP)工具,从PDF文件中提取结构化的信息。
二、Python及相关库的安装
在开始之前,我们需要安装Python及相关的库。在Python官网上下载并安装Python的最新版本。在安装Python之后,我们需要使用pip命令安装以下相关库:
- PyPDF2:用于处理PDF文件
- nltk:Python的自然语言处理工具包
- pandas:用于数据分析与处理
安装完成后,我们可以开始编写Python代码。
三、导入所需的库
首先,我们需要导入所需的库,包括PyPDF2、nltk和pandas:
import PyPDF2 import nltk import pandas as pd
四、读取PDF文件
接下来,我们需要读取PDF文件。使用PyPDF2库的PdfReader类来读取文件:
pdf_file = open('file.pdf', 'rb') pdf_reader = PyPDF2.PdfReader(pdf_file)
这里,我们需要将'file.pdf'替换为你想要读取的实际PDF文件名。
五、提取文本内容
读取PDF文件后,我们可以使用PyPDF2库提供的API来提取PDF中的文本内容:
text_content = '' for page in pdf_reader.pages: text_content += page.extract_text()
这样,所有页面的文本内容将被连接在一起并保存在text_content变量中。
六、数据处理与预处理
在提取文本内容后,我们需要对其进行处理与预处理。首先,我们将文本按照句子进行分割,以便后续的分析处理。我们可以使用nltk库来实现:
sentence_tokens = nltk.sent_tokenize(text_content)
接下来,我们可以将每个句子再次进行分词,以便后续的文本分析与处理:
word_tokens = [nltk.word_tokenize(sentence) for sentence in sentence_tokens]
七、文本分析与处理
在完成数据的预处理后,我们可以开始对文本进行分析与处理。这里,我们以提取关键词为例,展示具体的代码示例。
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from collections import Counter # 停用词 stop_words = set(stopwords.words('english')) # 词形还原 lemmatizer = WordNetLemmatizer() # 去除停用词,词形还原,统计词频 word_freq = Counter() for sentence in word_tokens: for word in sentence: if word.lower() not in stop_words and word.isalpha(): word = lemmatizer.lemmatize(word.lower()) word_freq[word] += 1 # 提取前20个关键词 top_keywords = word_freq.most_common(20)
这段代码中,我们使用nltk库提供的stopwords和WordNetLemmatizer类来分别处理停用词和词形还原。然后,我们使用Counter类来统计每个词的词频,并提取出现频率最高的前20个关键词。
八、结果展示与保存
最后,我们可以将提取的关键词以表格形式展示,并保存为CSV文件:
df_keywords = pd.DataFrame(top_keywords, columns=['Keyword', 'Frequency']) df_keywords.to_csv('keywords.csv', index=False)
这样,我们就可以得到以表格形式展示的关键词,并将其保存为名为'keywords.csv'的CSV文件。
九、总结
通过使用Python及相关的NLP工具,我们可以方便地从PDF文件中提取结构化的信息。在实际应用中,还可以使用其他的NLP技术,如命名实体识别、文本分类等,根据需求进行更复杂的文本分析与处理。希望本文能够帮助读者在处理PDF文件时提取有用的信息。
今天关于《如何用Python for NLP从PDF文件中提取结构化的信息?》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

- 上一篇
- 优化Go语言内存使用的几种技巧

- 下一篇
- 智领未来,赋能无限!2023百度爱采购超级直播盛典「财富说」完美收官
-
- 文章 · python教程 | 10分钟前 |
- Python多级索引详解与实战技巧
- 479浏览 收藏
-
- 文章 · python教程 | 31分钟前 | Python 对比学习 异常检测 数据增强 InfoNCELoss
- 对比学习如何实现异常检测?
- 354浏览 收藏
-
- 文章 · python教程 | 47分钟前 |
- Python批量重命名文件方法详解
- 179浏览 收藏
-
- 文章 · python教程 | 1小时前 | 模型部署 Kubernetes Docker镜像 异常检测模型 SeldonCore
- SeldonCore异常检测模型部署指南
- 388浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythoninterp2d二维插值技巧:正确使用避免错误取值
- 194浏览 收藏
-
- 文章 · python教程 | 1小时前 | 数据预处理 数据漂移 聚类异常检测 Mini-BatchK-Means 实时数据流
- Python实时聚类异常检测方法解析
- 360浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 动态扩展SQLite结构:键值对存储更安全
- 138浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python游戏开发入门:Pygame基础教程
- 131浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PythonCLI开发:Click库高效技巧
- 224浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python自动化办公:pyautogui实用教程
- 415浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 96次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 89次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 107次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 98次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 99次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览