使用Java技术准确识别合同上的真实公章的实现方法
目前golang学习网上已经有很多关于文章的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《使用Java技术准确识别合同上的真实公章的实现方法》,也希望能帮助到大家,如果阅读完后真的对你学习文章有帮助,欢迎动动手指,评论留言并分享~
使用Java技术准确识别合同上的真实公章的实现方法
- 引言
公章在合同中的作用极其重要,它代表了公权力的合法行使和企业的正式认可。然而,随着技术的发展,伪造公章的问题也逐渐突显出来。本文介绍了一种使用Java技术准确识别合同上的真实公章的实现方法,通过数字图像处理和机器学习算法,确保公章的真实性和合法性。 - 图像预处理
在开始识别公章之前,我们需要对合同图像进行预处理,以提高后续算法的准确性。预处理主要包括图像二值化、噪声去除和边缘检测。
2.1. 图像二值化
合同图像一般是彩色的,但公章通常是黑白图案。因此,我们需要将彩色图像转换为二值图像,以便更好地提取公章的特征。可以使用OpenCV库中的二值化函数来实现:
import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.CvType; import org.opencv.core.Size; import org.opencv.core.Scalar; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; public class ImageBinarization { public static void main(String[] args) { // 加载OpenCV库 System.loadLibrary(Core.NATIVE_LIBRARY_NAME); // 读取合同图像 Mat image = Imgcodecs.imread("contract.jpg"); // 转换为灰度图像 Mat grayImage = new Mat(); Imgproc.cvtColor(image, grayImage, Imgproc.COLOR_BGR2GRAY); // 二值化 Mat binaryImage = new Mat(); Imgproc.threshold(grayImage, binaryImage, 0, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU); // 保存二值化图像 Imgcodecs.imwrite("binary_image.jpg", binaryImage); } }
2.2. 噪声去除
由于合同图像可能存在一些噪声,例如扫描或拍摄过程中的颗粒和纹理,我们需要对二值图像进行一些处理,去除这些噪声。可以使用OpenCV库中的开操作来实现:
import org.opencv.core.Mat; import org.opencv.core.CvType; import org.opencv.core.Size; import org.opencv.core.Scalar; import org.opencv.imgproc.Imgproc; public class NoiseRemoval { public static void main(String[] args) { // 读取二值化图像 Mat binaryImage = Imgcodecs.imread("binary_image.jpg", Imgcodecs.IMREAD_GRAYSCALE); // 进行开操作 Mat noiseRemovedImage = new Mat(); Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(3, 3)); Imgproc.morphologyEx(binaryImage, noiseRemovedImage, Imgproc.MORPH_OPEN, kernel); // 保存去噪声图像 Imgcodecs.imwrite("noise_removed_image.jpg", noiseRemovedImage); } }
2.3. 边缘检测
边缘检测是识别公章的关键步骤。可以使用OpenCV库中的Canny算法来实现:
import org.opencv.core.Mat; import org.opencv.core.CvType; import org.opencv.core.Size; import org.opencv.core.Scalar; import org.opencv.imgproc.Imgproc; public class EdgeDetection { public static void main(String[] args) { // 读取去噪声图像 Mat noiseRemovedImage = Imgcodecs.imread("noise_removed_image.jpg", Imgcodecs.IMREAD_GRAYSCALE); // 进行边缘检测 Mat edges = new Mat(); Imgproc.Canny(noiseRemovedImage, edges, 100, 200); // 保存边缘图像 Imgcodecs.imwrite("edges.jpg", edges); } }
- 公章识别
在图像预处理完成后,我们可以开始进行公章识别。这里我们使用机器学习算法,通过特征训练和分类器构建来实现公章的准确识别。一个常用的机器学习算法是支持向量机(Support Vector Machine,SVM)。
3.1. 特征提取
首先,我们需要从边缘图像中提取一些特征,以用于训练和分类。常用的特征包括形状、纹理和颜色等。这里以形状特征为例,使用OpenCV库中的轮廓检测来提取公章的形状特征:
import org.opencv.core.Mat; import org.opencv.core.CvType; import org.opencv.core.Size; import org.opencv.core.Scalar; import org.opencv.imgproc.Imgproc; public class ShapeFeatureExtraction { public static void main(String[] args) { // 读取边缘图像 Mat edges = Imgcodecs.imread("edges.jpg", Imgcodecs.IMREAD_GRAYSCALE); // 检测轮廓 List<MatOfPoint> contours = new ArrayList<>(); Mat hierarchy = new Mat(); Imgproc.findContours(edges, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); // 提取轮廓特征 double[] features = new double[contours.size()]; for (int i = 0; i < contours.size(); i++) { features[i] = Imgproc.contourArea(contours.get(i)); } // 打印轮廓特征 for (double feature : features) { System.out.println("Contour feature: " + feature); } } }
3.2. 训练和分类
接下来,我们使用提取的特征进行训练和分类。首先,我们需要准备一些标记好的公章图像作为训练样本。然后,将提取的特征和对应的标记给机器学习算法进行训练,构建一个公章的分类器。在识别阶段,将待识别的合同图像进行特征提取,再使用训练好的分类器进行分类判断。
由于训练和分类的完整代码较为复杂,此处无法一一展示,但可以参考OpenCV官方文档和相关教程,使用支持向量机等机器学习算法进行训练和分类。
- 结论
通过本文介绍的方法,我们可以使用Java技术准确识别合同上的真实公章。首先,对合同图像进行预处理,包括二值化、噪声去除和边缘检测。然后,使用机器学习算法提取公章的特征,并训练和构建一个公章的分类器。最后,通过特征提取和分类判断,实现合同公章的准确识别。
然而,需要注意的是,虽然本方法可以提高公章识别的准确性,但并不能百分之百保证公章的真实性和合法性。在实际应用中,还需要结合其他安全措施和手段,确保公章的安全和有效性。
参考文献:
- OpenCV官方文档:https://docs.opencv.org/
- 机器学习实战:Scikit-Learn与TensorFlow(作者:Aurélien Géron,译者:唐学韬,包建强)
到这里,我们也就讲完了《使用Java技术准确识别合同上的真实公章的实现方法》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于Java技术,准确识别,公章实现的知识点!

- 上一篇
- 如何在Docker容器中配置Nginx代理服务器以支持Web服务的HTTP/2协议?

- 下一篇
- PHP物联网硬件操作示例:通过代码实现设备管理
-
- 文章 · java教程 | 18分钟前 |
- Java新时间API使用详解
- 245浏览 收藏
-
- 文章 · java教程 | 26分钟前 |
- Java类成员详解:字段、方法与访问控制
- 103浏览 收藏
-
- 文章 · java教程 | 29分钟前 |
- JUnit5单元测试实用技巧全解析
- 320浏览 收藏
-
- 文章 · java教程 | 50分钟前 |
- 启动新服务前停止旧服务的正确步骤
- 332浏览 收藏
-
- 文章 · java教程 | 1小时前 | 预防 try-catch 边界检查 ArrayIndexOutOfBoundsException Java数组越界
- Java数组越界错误解决方法
- 113浏览 收藏
-
- 文章 · java教程 | 1小时前 |
- Android服务管理与数据传递方法
- 306浏览 收藏
-
- 文章 · java教程 | 1小时前 |
- JoltJSON求和技巧:对象数值计算指南
- 188浏览 收藏
-
- 文章 · java教程 | 1小时前 |
- Java实现SSO单点登录教程详解
- 458浏览 收藏
-
- 文章 · java教程 | 1小时前 |
- Java类内对象变量访问方式解析
- 188浏览 收藏
-
- 文章 · java教程 | 1小时前 |
- JavaVelocity模板使用技巧详解
- 235浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 117次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 112次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 128次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 121次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 126次使用
-
- 提升Java功能开发效率的有力工具:微服务架构
- 2023-10-06 501浏览
-
- 掌握Java海康SDK二次开发的必备技巧
- 2023-10-01 501浏览
-
- 如何使用java实现桶排序算法
- 2023-10-03 501浏览
-
- Java开发实战经验:如何优化开发逻辑
- 2023-10-31 501浏览
-
- 如何使用Java中的Math.max()方法比较两个数的大小?
- 2023-11-18 501浏览