如何用Python编写KNN算法?
珍惜时间,勤奋学习!今天给大家带来《如何用Python编写KNN算法?》,正文内容主要涉及到等等,如果你正在学习文章,或者是对文章有疑问,欢迎大家关注我!后面我会持续更新相关内容的,希望都能帮到正在学习的大家!
如何用Python编写KNN算法?
KNN(K-Nearest Neighbors,K近邻算法)是一种简单而常用的分类算法。它的思想是通过测量不同样本之间的距离,将测试样本分类到最近的K个邻居中。本文将介绍如何使用Python编写并实现KNN算法,并提供具体的代码示例。
首先,我们需要准备一些数据。假设我们有一组二维的数据集,每个样本都有两个特征。我们将数据集分为两个类别,并在二维平面上绘制出来。代码如下:
import numpy as np import matplotlib.pyplot as plt # 生成随机数据 np.random.seed(0) X1 = np.random.randn(100, 2) + np.array([0, 2]) X2 = np.random.randn(100, 2) + np.array([2, 0]) X = np.vstack((X1, X2)) y = np.hstack((np.zeros(100), np.ones(100))) # 绘制数据集 plt.scatter(X[:, 0], X[:, 1], c=y) plt.show()
接下来,我们需要编写KNN算法的实现代码。首先,我们定义一个函数来计算两个样本之间的欧氏距离(Euclidean Distance)。代码如下:
def euclidean_distance(x1, x2): return np.sqrt(np.sum((x1 - x2)**2))
然后,我们编写一个函数来预测一个测试样本的类别。该函数首先计算测试样本与所有训练样本之间的距离,然后选择距离最近的K个样本,并根据这K个邻居的类别进行投票,最后返回得票最多的类别作为预测结果。代码如下:
def knn_predict(X_train, y_train, x_test, k): distances = [euclidean_distance(x_test, x) for x in X_train] k_indices = np.argsort(distances)[:k] k_nearest_labels = [y_train[i] for i in k_indices] return np.argmax(np.bincount(k_nearest_labels))
最后,我们将数据集划分为训练集和测试集,并使用KNN算法进行预测。代码如下:
from sklearn.model_selection import train_test_split # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 对每个测试样本进行预测 predictions = [knn_predict(X_train, y_train, x_test, k=3) for x_test in X_test] # 计算准确率 accuracy = np.mean(predictions == y_test) print("Accuracy:", accuracy)
通过以上代码示例,我们完成了KNN算法的编写。可以看到,使用Python实现KNN算法相对简单,而且代码量较少。在实际应用中,我们可以根据具体问题调整K值,以达到最佳的分类效果。
总结起来,本文介绍了如何使用Python编写KNN算法,包括数据准备、欧氏距离计算、算法实现和准确率计算等步骤。希望本文能对读者理解和应用KNN算法有所帮助。
本篇关于《如何用Python编写KNN算法?》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

- 上一篇
- 如何应用Golang Facade模式解决复杂业务场景

- 下一篇
- 为什么Python编程是行业内最畅销的就业方向?
-
- 文章 · python教程 | 1分钟前 | 数据采样 random.sample pandas.groupby 分层抽样 简单随机抽样
- Python数据采样技巧与实现方法
- 407浏览 收藏
-
- 文章 · python教程 | 45分钟前 |
- Python工厂模式使用技巧大全
- 361浏览 收藏
-
- 文章 · python教程 | 1小时前 | scikit-learn DBSCAN 数据预处理 K-means 轮廓系数
- Python聚类分析实用方法与技巧
- 494浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- VSCode配置Python:插件推荐及调试攻略
- 390浏览 收藏
-
- 文章 · python教程 | 10小时前 | 嵌套结构 安全性 json.loads() try-except ujson
- Python解析JSON响应的详细教程
- 492浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Python数据归一化技巧详解
- 371浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- 数据类型转换技巧与方法全解析
- 176浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Python轻松重命名文件的技巧
- 207浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 2次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 2次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 2次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 9次使用
-
- Brev AI
- 探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
- 10次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览