当前位置:首页 > 文章列表 > 文章 > java教程 > 如何使用Java技术有效鉴别合同上的公章真假

如何使用Java技术有效鉴别合同上的公章真假

2023-10-07 15:35:20 0浏览 收藏

知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个文章开发实战,手把手教大家学习《如何使用Java技术有效鉴别合同上的公章真假》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!

如何使用Java技术有效鉴别合同上的公章真假

随着科技的不断进步,越来越多的文书、合同等文件被电子化处理,公章的抗伪性和安全性变得尤为重要。而使用Java技术来有效鉴别合同上的公章真假,可以帮助我们加强公章的安全性和可靠性。本文将介绍如何使用Java技术来进行公章真假鉴别,并提供相应的代码示例。

第一步:获取公章图像数据
首先,我们需要获得合同上的公章图像数据。这可以通过扫描合同、拍摄合同照片等方式来实现。在Java中,我们可以使用Image类来处理图像数据。以下是一个示例代码,用于将图像文件加载到Java程序中:

import java.awt.Image;
import java.awt.image.BufferedImage;
import javax.imageio.ImageIO;
import java.io.File;
import java.io.IOException;

public class ContractSealVerification {
    public static void main(String[] args) {
        try {
            File imageFile = new File("seal.jpg"); // 公章图像文件的路径
            BufferedImage image = ImageIO.read(imageFile); // 加载图像文件
            // 根据需要,我们可以对图像进行预处理,例如灰度化、二值化等操作
            // ...
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

第二步:提取公章图像特征
在进行公章真假鉴别之前,我们需要提取公章图像的特征。常用的特征提取方法有灰度共生矩阵、局部二值模式等。在本例中,我们以灰度共生矩阵为例。以下是一个示例代码,用于提取公章图像的灰度共生矩阵特征:

import java.awt.Image;
import java.awt.image.BufferedImage;
import javax.imageio.ImageIO;
import java.io.File;
import java.io.IOException;

public class ContractSealVerification {
    public static void main(String[] args) {
        try {
            File imageFile = new File("seal.jpg"); // 公章图像文件的路径
            BufferedImage image = ImageIO.read(imageFile); // 加载图像文件
            int[][] grayMatrix = extractGrayMatrix(image); // 提取灰度共生矩阵特征
            // ...
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public static int[][] extractGrayMatrix(BufferedImage image) {
        // 根据需要,我们可以调整图像的大小
        int width = image.getWidth();
        int height = image.getHeight();
        int[][] grayMatrix = new int[width][height];
        
        for (int i = 0; i < width; i++) {
            for (int j = 0; j < height; j++) {
                // 将RGB颜色转换为灰度值
                int rgb = image.getRGB(i, j);
                int gray = (rgb >> 16) & 0xff; // 获取红色分量
                grayMatrix[i][j] = gray;
            }
        }
        
        return grayMatrix;
    }
}

第三步:建立公章真伪模型
在获得公章图像的特征后,我们需要建立公章真伪模型。这可以采用传统的机器学习算法,比如支持向量机(SVM)、随机森林(Random Forest)等。以下是一个示例代码,用于建立公章真伪模型:

import java.awt.Image;
import java.awt.image.BufferedImage;
import javax.imageio.ImageIO;
import java.io.File;
import java.io.IOException;
import java.util.List;
import java.util.ArrayList;
import weka.classifiers.Classifier;
import weka.classifiers.functions.LibSVM;
import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;

public class ContractSealVerification {
    public static void main(String[] args) {
        try {
            // 获取训练数据
            Instances instances = getTrainingData();
            // 建立支持向量机(SVM)分类器
            Classifier classifier = new LibSVM();
            classifier.buildClassifier(instances);
            
            // 获取待鉴别的公章图像特征
            int[][] grayMatrix = extractGrayMatrix(image);
            double[] features = extractFeatures(grayMatrix);
            Instance instance = new DenseInstance(1.0, features);
            instance.setDataset(instances);
            
            // 进行真伪预测
            double prediction = classifier.classifyInstance(instance);
            if (prediction == 0) {
                System.out.println("公章是真实的");
            } else {
                System.out.println("公章是伪造的");
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public static Instances getTrainingData() {
        // 创建属性列表
        List attributes = new ArrayList<>();
        // 添加特征属性
        for (int i = 0; i < numFeatures; i++) {
            Attribute attribute = new Attribute("feature" + i);
            attributes.add(attribute);
        }
        // 添加类别属性
        List labels = new ArrayList<>();
        labels.add("真实");
        labels.add("伪造");
        Attribute labelAttribute = new Attribute("label", labels);
        attributes.add(labelAttribute);
        
        // 创建数据集
        Instances instances = new Instances("seal_verification", attributes, 0);
        instances.setClassIndex(instances.numAttributes() - 1);
        
        // 添加训练样本
        Instance instance1 = new DenseInstance(numFeatures + 1);
        // 设置特征值
        for (int i = 0; i < numFeatures; i++) {
            instance1.setValue(i, featureValue);
        }
        // 设置类别
        instance1.setValue(numFeatures, "真实");
        instances.add(instance1);
        // ...
        
        return instances;
    }
    
    public static double[] extractFeatures(int[][] grayMatrix) {
        // 提取图像特征
        double[] features = new double[numFeatures];
        // ...
        return features;
    }
}

总结:
本文介绍了如何使用Java技术来有效鉴别合同上的公章真假。通过获取公章图像数据、提取公章图像特征和建立公章真伪模型等步骤,我们能够运用Java实现公章的真伪鉴别功能。希望读者在实际应用中能够借鉴本文的内容,并根据具体需要对代码进行优化和扩展。

注意:本节代码使用了第三方库Weka进行机器学习任务的实现。

本篇关于《如何使用Java技术有效鉴别合同上的公章真假》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

PHP的错误处理机制和调试工具为开发者排除障碍PHP的错误处理机制和调试工具为开发者排除障碍
上一篇
PHP的错误处理机制和调试工具为开发者排除障碍
PHP 商场优惠券开发:避免的常见陷阱和错误
下一篇
PHP 商场优惠券开发:避免的常见陷阱和错误
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    10次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    26次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    25次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    34次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码