当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 介绍RWKV:线性Transformers的兴起和探索替代方案

介绍RWKV:线性Transformers的兴起和探索替代方案

来源:51CTO.COM 2023-09-26 20:21:33 0浏览 收藏

学习科技周边要努力,但是不要急!今天的这篇文章《介绍RWKV:线性Transformers的兴起和探索替代方案》将会介绍到等等知识点,如果你想深入学习科技周边,可以关注我!我会持续更新相关文章的,希望对大家都能有所帮助!

以下是我在RWKV播客中的一些想法摘要:https://www.latent.space/p/rwkv#details

介绍RWKV:线性Transformers的兴起和探索替代方案


为什么替代方案的重要性如此突出?

随着2023年的人工智能革命,Transformer架构目前正处于巅峰。然而,由于人们急于采用成功的Transformer架构,所以会容易忽视可以借鉴的替代品。

作为工程师,我们不应该采取一刀切的方法,对每个问题都使用相同的解决方案。我们应该在每一个情况下权衡利弊;否则将会被困在特定平台的限制范围内,同时因不知道有其他选择而感到“满足”,这可能会使发展一夜回到解放前

这个问题并不是人工智能领域独有的,而是一种从古到今都在重复的历史模式。


SQL战争历史的一页,是关于数据库管理系统之间的竞争和对抗的故事。在这个故事中,各种数据库管理系统如Oracle、MySQL和SQL Server等,为了争夺市场份额和技术优势,展开了激烈的竞争。这些竞争不仅体现在性能和功能方面,还涉及到商业策略、市场推广以及用户满意度等多个方面。这些数据库管理系统不断地推出新的功能和改进,以吸引更多的用户和企业选择他们的产品。SQL战争历史的一页,见证了数据库管理系统行业的发展和变革,也为我们提供了宝贵的经验和教训

最近在软件开发中有一个值得注意的例子是,当SQL服务器开始受到物理限制时,就出现了NoSQL的趋势。世界各地的初创企业都因为"规模"的原因转向了NoSQL,尽管它们远未达到这些规模

然而,随着时间的推移,随着最终一致性和NoSQL管理开销的出现,以及硬件功能在SSD速度和容量方面的巨大飞跃,SQL服务器最近又出现了回归的趋势,因为它们使用简单性,并且现在90%以上的初创公司都有足够的可扩展性

SQL和NoSQL是两种不同的数据库技术。SQL是结构化查询语言的缩写,主要用于处理结构化数据。NoSQL则是指非关系型数据库,适用于处理非结构化或半结构化数据。 虽然有人认为SQL比NoSQL更好,或者反之亦然,但实际上这只是意味着每种技术都有自己的优缺点和适用场景。在某些情况下,SQL可能更适合处理复杂的关系型数据,而NoSQL则更适合处理大规模的非结构化数据。 然而,这并不意味着只能选择其中一种技术。实际上,许多应用程序和系统在实践中使用了SQL和NoSQL的混合解决方案。根据具体的需求和数据类型,可以选择最适合的技术来解决问题。 因此,重要的是理解每种技术的特点和适用场景,并根据具体情况做出明智的选择。无论是SQL还是NoSQL,都有其独特的学习点和首选用例,可以在类似技术中相互借鉴和交叉传播


目前Transformer架构最大的痛点是什么?

通常,这包括计算、上下文大小、数据集和对齐。在本次讨论中,我们将重点讨论计算和上下文长度:

  • 由于使用/生成的每个令牌的O(N^2)增加而导致的二次计算成本。这使得大于10万的上下文大小非常昂贵,从而影响推理和训练。
  • 当前的GPU短缺加剧了这个问题。
  • 上下文大小限制了Attention机制,严重限制了“智能代理”用例(如smol-dev),并强制解决问题。较大的上下文需要较少的解决方法。

那么,我们该如何解决这个问题呢?


介绍RWKV:一种线性Transformer/现代大型RNN

RWKV和微软RetNet是被称为“线性Transformer”的新类别中的第一个

它通过支持以下内容直接解决了上述三个限制:

  • 线性计算成本,与上下文大小无关。
  • 在CPU(尤其是ARM)中,允许以更低的要求在RNN模式下输出合理的令牌/秒。
  • 没有作为RNN的硬上下文大小限制。文档中的任何限制都是指导原则——您可以对其进行微调。

随着我们不断将人工智能模型扩大到100k及以上的上下文大小,二次方计算成本开始呈指数级增长。

然而,线性Transformer并没有放弃递归神经网络架构及解决其瓶颈,这迫使它们被取代。

不过,重新设计的RNN吸取了Transformer可扩展的经验教训,使RNN能与Transformer工作方式类似,并消除了这些瓶颈。

在训练速度方面,用Transformer让它们重返赛场——允许它们在O(N)成本下高效运行,同时在训练中扩展到10亿个参数以上,同时保持类似的性能水平。

介绍RWKV:线性Transformers的兴起和探索替代方案

图表:线性Transformer计算成本按每个令牌线性缩放与变换器的指数增长


当你将平方比例应用于线性缩放时,你会在2k令牌计数时获得10倍以上的增长,在100k令牌长度时获得100倍以上的增长

在14B参数下,RWKV是最大的开源线性Transformer,与GPT NeoX和其他类似数据集(如the Pile)不相上下。


介绍RWKV:线性Transformers的兴起和探索替代方案

RWKV模型的性能与类似规模的现有变压器模型相当,各种基准显示


但用更简单的话来说,这意味着什么?


优点

  • 在较大的上下文大小中,推理/训练比Transformer便宜10倍甚至更多
  • 在RNN模式下,可以在非常有限的硬件上缓慢运行
  • 与相同数据集上的Transformer性能相似
  • RNN没有技术上下文大小限制(无限上下文!)


缺点

  • 滑动窗口问题,有损内存超过某一点
  • 尚未证明可扩展到14B参数以上
  • 不如变压器优化和采用

因此,尽管RWKV还没有达到LLaMA2那样的60B+参数规模,但只要有正确的支持和资源,它有可能以更低的成本和更广泛的环境来实现这一目标,特别是在模型趋向于更小、更高效的情况下

如果您的用例对效率很重要,请考虑这一点。然而,这并非最终解决方案——关键在于健康的替代品


我们应该考虑学习其他替代方案以及它们的好处

扩散模型:文本训练速度较慢,但对多时期训练具有极高的弹性。找出原因可以帮助缓解令牌危机。

生成对抗性网络/代理:可以在没有数据集的情况下,使用技术将所需的训练集训练到特定目标,即使是基于文本的模型。


原文标题:Introducing RWKV: The Rise of Linear Transformers and Exploring Alternatives,作者:picocreator

https://hackernoon.com/introducing-rwkv-the-rise-of-linear-transformers-and-exploring-alternatives

本篇关于《介绍RWKV:线性Transformers的兴起和探索替代方案》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
升级 iOS 17 是准备转换到新 iPhone 15的必要步骤升级 iOS 17 是准备转换到新 iPhone 15的必要步骤
上一篇
升级 iOS 17 是准备转换到新 iPhone 15的必要步骤
国产机器狗新秀,要“做地面的大疆”!首款四轮足商用机器人刚刚亮相
下一篇
国产机器狗新秀,要“做地面的大疆”!首款四轮足商用机器人刚刚亮相
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    26次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    21次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    23次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    23次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    25次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码