GPT-4通过97轮对话探索全球难题,得出P≠NP的结论
一分耕耘,一分收获!既然打开了这篇文章《GPT-4通过97轮对话探索全球难题,得出P≠NP的结论》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!
对于身处科研领域的人来说,或多或少的都听到过 P/NP 问题,该问题被克雷数学研究所收录在千禧年大奖难题中,里面有七大难题,大家熟知的庞加莱猜想、黎曼假设等都包含在内。而且这个组织还为能够攻克该问题的研究人员提供了上百万美元的奖金悬赏。
P/NP 问题最早在 1971 年由史提芬·库克(Stephen A. Cook)和列昂尼德·列文分别提出。多年来,许多人都投入到研究这个问题中。然而,有人表示解决 P=NP 问题可能需要保守估计还需要 100 年的时间
近年来,有一些人声称已经证明了 P 等于或者不等于 NP,但是这些证明过程都存在错误。然而,到目前为止,还没有人能够给出一个确切的答案
随着人工智能技术的发展,尤其是最近一年大型语言模型的快速更新,研究人员开始尝试利用人工智能技术来解决一些全球性难题
研究者们来自微软研究院、北京大学、北航等机构,他们提出使用大语言模型(LLM)来增强和加速对P versus NP问题的研究
本文提出了一个通用框架,即苏格拉底推理(Socratic reasoning),用于促使LLM进行深入思考并解决复杂问题。在这个框架的基础上,LLM能够递归地发现、解决和整合问题,同时还能进行自我评估和完善
本文对 P vs. NP 问题的试点研究表明,GPT-4 成功地生成了一个证明模式,并在 97 轮对话回合中进行了严格的推理,得出「P≠ NP」的结论,这与(Xu 和 Zhou,2023)结论一致 。
请点击以下链接查看论文:https://arxiv.org/pdf/2309.05689.pdf
本文的主要贡献可以总结为:
- 将 LLM 作为与人类一起协作的伙伴来应对复杂的科学挑战,并提出「LLM for Science(LLM4Science )」范式。
- 引入一个名为「苏格拉底推理」的框架,鼓励 LLM 使用演绎、转换、分解等模式来激发批判性思维。
- 使用 GPT-4 和苏格拉底推理框架进行试点研究,以解决理论计算机科学中的 P 与 NP 问题。
- GPT-4 成功地生成了证明模式,并在 97 个对话回合中进行了严格的推理,得出了 P ≠ NP 的结论,与 Xu 和 Zhou (2023) 最近的工作一致。
- 该研究展示了 GPT-4 等 LLM 推断新知识并与人类合作探索复杂专家级问题的潜在能力。
- 本文强调了 LLM 是跨领域的通用创新领航者,这与之前为特定任务量身定制的专门 AI 模型不同。
- LLM 流畅运用自然和数学语言的能力对于跨学科发现至关重要。
- 这项工作揭示了如何利用 LLM 作为合作伙伴来增强和加速跨不同领域的科学研究进程。
重写后的内容:该段落中提到,他们将框架命名为「苏格拉底推理」是受到了古希腊哲学家苏格拉底的启发。苏格拉底曾经说过:「我无法教给任何人任何东西。我只能让他们思考。」而该框架的整体设计思路也是如此,它是一种通用的问题解决框架,允许LLM在广泛的解决方案空间中导航并有效地得出答案
表1中列举了「苏格拉底推理」的五种提示模式:演绎、变换、分解、验证和融合。这些模式被用于发现新的见解和观点,将复杂的问题分解成子问题或小步骤,并通过挑战响应答案来进行自我改进
在较小的问题(atomic problem)上,LLM 能够直接给出推理结果,这时采用演绎模式(例如提示语为让我们一步一步思考……)来指导 LLM 直接得出结论。
对于更加复杂的问题,本文首先要求 LLM 将问题转化成一个新问题或将其分解为几个子问题。然后递归地执行这些模式,直到达到原子 ji 问题。
在出现新问题或得出新结论时,应采用验证模式并利用LLM的自我评估能力进行验证和改进
最后,融合模式要求LLM根据子问题的结果综合结论
通过一系列对话递归地激励 LLM 继续上述过程,直到解决目标问题
在这个工作中,「苏格拉底推理」为具有挑战性的问题提供了一个系统的提示框架
下图为「苏格拉底推理」中用于解决 P vs. NP 问题的对话示例。案例研究中使用了 GPT-4 API,此外,本文还根据轮次索引对流程进行排序。
在探索过程中,本文引入了五个不同的角色作为辅助证明者,例如精通概率论的数学家。实验总共进行了97轮对话,分为前14轮和后83轮对话
举个例子,第一轮提示:你能够从哲学的角度而不是从计算机理论的角度,找到P!=NP背后的根本问题吗?
以下是其他的提示:
对话不断进行,最终一轮对话如下:最后得出结论 P≠ NP
感兴趣的读者可以查看原论文,了解更多内容。
到这里,我们也就讲完了《GPT-4通过97轮对话探索全球难题,得出P≠NP的结论》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于AI,模型的知识点!

- 上一篇
- 又被批"挤牙膏"?但iPhone 15系再度揭示苹果宏大的AR生态计划

- 下一篇
- RTE2023 首批技术嘉宾公布:聊聊音视频技术的融合创新及与 AI 的应用赋能
-
- 科技周边 · 人工智能 | 1小时前 | 智能辅助驾驶 firefly萤火虫 地平线征程 高端智能电动小车 全球市场
- 地平线与蔚来合作车型firefly萤火虫正式上市
- 245浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 即梦ai添加时间戳教程即梦ai日期水印设置攻略
- 369浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 小米汽车上险量下降:YU7投产惹的祸
- 499浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- MistralAI发布多模态模型MistralMedium3
- 446浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 13次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 14次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 27次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 26次使用
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 53次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览