当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > UniOcc:将以视觉为中心的占用预测与几何和语义渲染大一统!

UniOcc:将以视觉为中心的占用预测与几何和语义渲染大一统!

来源:51CTO.COM 2023-09-14 14:39:52 0浏览 收藏

大家好,今天本人给大家带来文章《UniOcc:将以视觉为中心的占用预测与几何和语义渲染大一统!》,文中内容主要涉及到,如果你对科技周边方面的知识点感兴趣,那就请各位朋友继续看下去吧~希望能真正帮到你们,谢谢!

原标题: UniOcc: Unifying Vision-Centric 3D Occupancy Prediction with Geometric and Semantic Rendering

请点击以下链接查看论文:https://arxiv.org/pdf/2306.09117.pdf

UniOcc:将以视觉为中心的占用预测与几何和语义渲染大一统!

论文思路:

在这篇技术报告中,我们提出了一个名为UniOCC的解决方案,用于在CVPR 2023 nuScenes Open Dataset Challenge中进行以视觉为中心的3D占用预测轨迹。现有的占用预测方法主要专注于使用三维占用标签来优化三维体积空间的投影特征。然而,这些标签的生成过程非常复杂和昂贵(依赖于3D语义标注),并且受到体素分辨率的限制,无法提供细粒度的空间语义。为了解决这个限制,我们提出了一种新的统一占用(UniOcc)预测方法,明确施加空间几何约束,并通过体射线渲染(volume ray rendering)来补充细粒度的语义监督。我们的方法显著提高了模型的性能,并展示了在降低人工标注成本方面的良好潜力。考虑到标注3D占用的费力性,我们进一步提出了深度感知的Teacher Student(DTS)框架,以提高使用无标记数据的预测精度。我们的解决方案在官方单模型排行榜上获得了51.27%的mIoU,在本次挑战赛中排名第三

网络设计:

在这一挑战中,本文提出了UniOcc,这是一种利用体渲染(volume rendering)来统一二维和三维表示监督的通用解决方案,改进了多摄像机占用预测模型。本文没有设计新的模型架构,而是将重点放在以通用和即插即用的方式增强现有模型[3,18,20]上。

重新写作如下:本文通过将表示提升到NeRF-style表示[1,15,21],实现了使用体渲染(volume rendering)生成2D语义和深度地图的功能。这使得本文能够在2D像素级别上进行细粒度的监督。通过对三维体素进行射线采样,可以获取渲染的二维像素语义和深度信息。通过显式地集成几何遮挡关系和语义一致性约束,本文提供了模型的显式指导,并确保遵守这些约束

值得一提的是,UniOcc有潜力减少对昂贵的3D语义标注的依赖。在没有3D占用标签的情况下,仅使用本文的体渲染(volume rendering)监督进行训练的模型,甚至比使用3D标签监督进行训练的模型表现更好。这突出了减少对昂贵的3D语义标注的依赖的令人兴奋的潜力,因为场景表示可以直接从负担得起的2D分割标签学习。此外,利用SAM[6]和[14,19]等先进技术,还可以进一步降低二维分割标注的成本。

本文还介绍了深度感知师生(DTS)框架,这是一种自我监督的训练方法。与经典的Mean Teacher不同,DTS增强了教师模型的深度预测,在利用无标记数据的同时实现稳定和有效的训练。此外,本文应用了一些简单而有效的技术来提高模型的性能。这包括在训练中使用可见掩模,使用更强的预训练骨干网络,增加体素分辨率,以及实现测试时间数据增强(TTA)

UniOcc:将以视觉为中心的占用预测与几何和语义渲染大一统!

以下是UniOcc框架的概述: 图1

UniOcc:将以视觉为中心的占用预测与几何和语义渲染大一统!

图2。深度感知的Teacher-Student框架。

实验结果:

UniOcc:将以视觉为中心的占用预测与几何和语义渲染大一统!

UniOcc:将以视觉为中心的占用预测与几何和语义渲染大一统!

引用:

潘,M.,刘,L.,刘,J.,黄,P.,王,L.,张,S.,徐,S.,赖,Z.,杨,K.(2023)。UniOcc:将几何和语义渲染与视觉为中心的3D占用预测统一起来。ArXiv。/ abs / 2306.09117

UniOcc:将以视觉为中心的占用预测与几何和语义渲染大一统!

原文链接:https://mp.weixin.qq.com/s/iLPHMtLzc5z0f4bg_W1vIg

理论要掌握,实操不能落!以上关于《UniOcc:将以视觉为中心的占用预测与几何和语义渲染大一统!》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
魔法打败魔法,AI数据需要AI解决方案魔法打败魔法,AI数据需要AI解决方案
上一篇
魔法打败魔法,AI数据需要AI解决方案
早资道 | 淘宝内测大模型原生AI应用“淘宝问问”;快手:沈抖辞任非执行董事
下一篇
早资道 | 淘宝内测大模型原生AI应用“淘宝问问”;快手:沈抖辞任非执行董事
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    401次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    400次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    391次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    403次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    427次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码