SurroundOcc:环视三维占据栅格新SOTA!
IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《SurroundOcc:环视三维占据栅格新SOTA!》,聊聊,我们一起来看看吧!
在这个工作中,我们通过多帧点云构建了稠密占据栅格数据集,并设计了基于transformer的2D-3D Unet结构的三维占据栅格网络。很荣幸地,我们的文章被ICCV 2023收录,目前项目代码已开源,欢迎大家试用。
arXiv:https://arxiv.org/pdf/2303.09551.pdf
代码:https://github.com/weiyithu/SurroundOcc
主页链接:https://weiyithu.github.io/SurroundOcc/
最近一直在疯狂找工作,没有闲下来写,正好最近提交了camera-ready,作为一个工作的收尾觉得还是写个知乎总结下。其实文章部分的介绍各个公众号写的已经很好了,也感谢他们的宣传,大家可以直接参考自动驾驶之心的自动驾驶之心:nuScenes SOTA!SurroundOcc:面向自动驾驶的纯视觉3D占据预测网络(清华&天大)。总的来说,contribution分为两块,一部分是如何利用多帧的lidar点云构建稠密occupancy数据集,另一部分是如何设计occupancy预测的网络。其实两部分的内容都比较直接易懂,大家有哪块不理解的也可以随时问我。那么这篇文章我想讲点论文之外的事情,一个是如何改进当前方案使其更加易于部署,另一个是未来的发展方向。
部署
一个网络是否易于部署,主要看其中有没有比较难在板端实现的算子,SurroundOcc这个方法里比较难搞的两个算子是transformer层以及3D卷积。
transformer的主要作用是将2D feature转换到3D空间,那么其实这部分也可以用LSS,Homography甚至mlp来实现,所以可以根据已实现的方案去修改这部分的网络。但据我所知,transformer的方案在几个方案里对calibration不敏感并且性能也比较好,建议有能力实现transformer部署的还是利用原有方案。
对于3D卷积来说,可以将其替换成2D卷积,这里需要将原来 (C, H, W, Z) 的3D feature reshape成(C* Z, H, W)的 2D feature,然后就可以用2D卷积进行特征提取了,在最后occupancy预测那步再把它reshape回(C, H, W, Z),并进行监督。另一方面,skip connection由于分辨率比较大所以比较吃显存,部署的时候可以去掉只留最小分辨率那一层。我们实验发现3D卷积中的这两个操作在nuscenes上都会有些许掉点,但业界数据集规模要远大于nuscenes,有时候有些结论也会改变,掉点应该会少甚至不掉。
在数据集构建方面,最耗时的一步是泊松重建。我们使用的是nuscenes数据集,其中采用了32线激光雷达进行采集。即使使用了多帧拼接技术,我们发现拼接后的点云仍然存在许多洞。因此,我们采用了泊松重建来填补这些洞。然而,目前业界使用的许多激光雷达点云都比较密集,例如M1、RS128等。因此,在这种情况下,可以省略泊松重建这一步,以加快数据集构建的速度
另一方面,SurroundOcc里是利用nuscenes中标注好的三维目标检测框将静态场景和动态物体分离的。但实际应用过程中,可以利用autolabel,也就是三维目标检测&跟踪大模型去得到每个物体在整个sequence中的检测框。相较于人工标注的label,利用大模型跑出来的结果肯定会存在一些误差,最直接的体现就是多帧的物体拼接后会有重影的现象。但其实occupancy对于物体形状的要求没有那么高,只要检测框位置比较准就能满足需求。
未来方向
当前方法还是比较依赖lidar提供occupancy的监督信号的,但很多车上,尤其是一些低阶辅助驾驶的车上没有lidar,这些车通过shadow模式可以传回来大量的RGB数据,那么一个未来方向是能不能只利用RGB进行自监督学习。一个自然的解决思路就是利用NeRF进行监督,具体来说,前面backbone部分不变,得到一个occupancy的预测,然后利用体素渲染得到每个相机视角下的RGB,和训练集中的真值RGB做loss形成监督信号。但很可惜的是这一套straightforward的方法我们试了试并不是很work,可能的原因是室外场景range太大,nerf可能hold不住,但也可能我们没有调好,大家也可以再试试。
另一个方向是时序&occupancy flow。其实occupancy flow对于下游任务的用处远比单帧occupancy大。ICCV的时候没来得及整occupancy flow的数据集,而且发paper的话还要对比很多flow的baseline,所以当时就没搞这块。时序网络可以参考BEVFormer和BEVDet4D的方案,比较简单有效。难的地方还是flow数据集这一部分,一般的物体可以用sequence的三维目标检测框算出来,但异型物体例如小动物塑料袋等,可能需要借助场景流的方法进行标注。
需要进行改写的内容是:原文链接:https://mp.weixin.qq.com/s/_crun60B_lOz6_maR0Wyug
终于介绍完啦!小伙伴们,这篇关于《SurroundOcc:环视三维占据栅格新SOTA!》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

- 上一篇
- 萌娘百科推出会员服务,承诺无广告、加速 AI 工具等特色功能

- 下一篇
- 微软与 Project Gutenberg 合作,利用 AI 制作 5000 本免费有声书
-
- 科技周边 · 人工智能 | 3小时前 |
- StableVideoDiffusionvsRunway:模型对比与优劣分析
- 400浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- Deepseek联动Hotpot.aiPro,高效方案生成
- 202浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- AI视频生成工具推荐与新手使用教程
- 294浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 如何查看AIOverviewsAPI调用记录
- 187浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 小米汽车召回事件:软件能否弥补硬件缺陷?
- 416浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 通灵义码技巧提升操作效率方法
- 445浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 不露脸拍视频?AI生成玩法全解析
- 225浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- PandaWiki开源知识库
- PandaWiki是一款AI大模型驱动的开源知识库搭建系统,助您快速构建产品/技术文档、FAQ、博客。提供AI创作、问答、搜索能力,支持富文本编辑、多格式导出,并可轻松集成与多来源内容导入。
- 220次使用
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 1013次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 1042次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 1048次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 1117次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览