当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 以 GPU 实例演示 Alibaba Cloud Linux 3 对 AI 生态的支持

以 GPU 实例演示 Alibaba Cloud Linux 3 对 AI 生态的支持

来源:搜狐 2023-09-08 14:20:58 0浏览 收藏

科技周边小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《以 GPU 实例演示 Alibaba Cloud Linux 3 对 AI 生态的支持》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!


日前,Alibaba Cloud Linux 3 为使 AI 开发体验更高效,提供了一些优化升级,本文为“Alibaba Cloud Linux 3 AI 能力介绍”系列文章预告篇,以 GPU 实例为例,为大家演示 Alibaba Cloud Linux 3 对 AI 生态的支持。接下来还将陆续发布 2 篇系列文章,主要介绍基于 Alinux 的云市场镜像为用户提供开箱即用的 AI 基础软件环境,以及基于 AMD 介绍 AI 能力差异化。敬请期待。更多 Alibaba Cloud Linux 3 信息可前往官网查看:https://www.aliyun.com/product/ecs/alinux

当在 Linux 操作系统上开发人工智能(AI)应用程序时,研发人员可能会遇到一些挑战,这些挑战包括但不限于:

1. GPU 驱动程序:为了在 Linux 系统上使用 NVIDIA GPU 进行训练或推理,需要安装和配置正确的 NVIDIA GPU 驱动程序。由于不同的操作系统和 GPU 型号可能需要不同的驱动程序,因此可能需要一些额外的工作。

2. AI 框架编译:在 Linux 系统上使用 AI 框架进行编程时,需要安装和配置适当的编译器和其他依赖项。这些框架通常需要进行编译,因此需要确保正确安装了编译器和其他依赖项,并正确配置编译器。

3. 软件兼容性:Linux 操作系统支持许多不同的软件和工具,但不同版本和发行版之间可能存在兼容性问题。这可能会导致某些程序无法正常运行或者在某些操作系统上不可用。因此,研发人员需要了解其工作环境的软件兼容性,并进行必要的配置和修改。

4. 性能问题:AI 软件栈是一个异常复杂的系统,通常需要对不同型号的 CPU 和 GPU 进行专业的优化,才能发挥其最佳性能。软硬件协同的性能优化对于 AI 软件栈来说是一个具有挑战性的任务,需要拥有高超的技术水平和专业知识。

阿里云第三代云服务器操作系统 Alibaba Cloud Linux 3(以下简称“Alinux 3”)是基于龙蜥操作系统 Anolis OS 研发的商业版操作系统,为开发人员提供了强大的 AI 开发平台,通过支持龙蜥生态 repo(epao),Alinux 3 实现了对主流的 nvidia GPU 和 CUDA 生态的全面支持,使得 AI 开发更加便捷高效。此外,Alinux 3 还支持主流的 AI 框架 TensorFlow/PyTorch,intel/amd 等不同 CPU 平台对 AI 的优化,还将引入了 modelscope、huggingface 等大模型 SDK 的原生支持,为开发人员提供了丰富的资源和工具。这些支持,使得 Alinux 3 成为了一个完善的 AI 开发平台,解决 AI 开发人员的痛点问题,不用一直折腾环境,让 AI 开发体验更容易更高效。

Alinux 3 为开发人员提供了强大的 AI 开发平台。为了解决以上研发人员可能遇到的挑战,Alinux 3 提供了以下几点优化升级:

1. Alinux 3 通过引入龙蜥生态软件仓库(epao),支持开发者一键安装主流 NVIDIA GPU 驱动以及 CUDA 加速库,节省了开发者需要匹配驱动版本以及手动安装的时间。

2. epao 仓库中还提供了对主流 AI 框架 Tensorflow/PyTorch 的版本支持,同时安装过程中会自动解决 AI 框架的依赖问题,开发者无需进行额外编译,即可搭配系统 Python 环境进行快速开发。

3. Alinux 3 的 AI 能力在提供给开发者之前,所有组件均经过兼容性测试,开发者可以一键安装对应的 AI 能力,免去了环境配置中可能出现的对系统依赖项的修改,提高了使用过程中的稳定性。

4. Alinux 3 针对 Intel/AMD 等不同平台的 CPU 进行了 AI 专门优化,更好地释放硬件的全部性能

5. 为了更快的适应 AIGC 产业的快速迭代,Alinux 3 还将引入对 ModelScope、HuggingFace 等大模型 SDK 的原生支持,为开发人员提供了丰富的资源和工具。

在多维度的优化加持下,使得 Alinux 3 成为一个完善的 AI 开发平台,解决了 AI 开发人员的痛点问题,让 AI 开发体验更容易更高效。

以下以阿里云 GPU 实例为例子,演示 Alinux 3 对 AI 生态的支持:

1、购买 GPU 实例

以 GPU 实例演示 Alibaba Cloud Linux 3 对 AI 生态的支持

2、选择 Alinux 3 镜像

以 GPU 实例演示 Alibaba Cloud Linux 3 对 AI 生态的支持

3、安装 epao repo 配置

dnf install -y anolis-epao-release

4、安装nvidia GPU driver

安装 nvidia driver 之前先保证 kernel-devel 已安装,确保 nvidia driver 安装成功。

dnf install -y kernel-devel-$(uname-r)

安装 nvidia driver:

dnf install -y nvidia-driver nvidia-driver-cuda

安装完成后可以通过 nvidia-smi 命令查看 GPU 设备状态。

以 GPU 实例演示 Alibaba Cloud Linux 3 对 AI 生态的支持

5、安装 cuda 生态库

dnf install -y cuda

6、 安装 AI 框架 tensorflow/pytorch

当前提供 CPU 版的 tensorflow/pytorch,未来将支持 GPU 版的 AI 框架。

dnf install tensorflow -y dnf install pytorch -y

安装完成后可通过简单的命令查看是否安装成功:

以 GPU 实例演示 Alibaba Cloud Linux 3 对 AI 生态的支持

以 GPU 实例演示 Alibaba Cloud Linux 3 对 AI 生态的支持

7、部署模型

使用 Alinux 3 对 AI 的生态支持,可以部署 GPT-2 Large 模型来进行本文续写任务。

安装 Git 以及 Git LFS 方便后续下载模型。

dnf install -y git git-lfs wget

更新 pip,便于后续部署 Python 环境。

python -m pip install --upgrade pip

启用 Git LFS 的支持。

git lfs install

下载 write-with-transformer 项目源码,以及预训练模型。write-with-transformer 项目是一个网页写作 APP,可以使用 GPT-2 大模型对写作内容进行续写。

git clone https://huggingface.co/spaces/merve/write-with-transformer
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/gpt2-large
wget https://huggingface.co/gpt2-large/resolve/main/pytorch_model.bin -O gpt2-large/pytorch_model.bin

安装 write-with-transformer 所需要的依赖环境。

cd ~/write-with-transformer
pip install --ignore-installed pyyaml==5.1
pip install -r requirements.txt

环境部署完毕后,就可以运行网页版 APP,来体验 GPT-2 帮助完成写作的乐趣。目前 GPT-2 只支持使用英文进行文本生成。

cd ~/write-with-transformer
sed -i 's?"gpt2-large"?"../gpt2-large"?g' app.py
sed -i '34s/10/32/;34s/30/120/' app.py
streamlit run app.py --server.port 7860

回显信息出现 External URL: http://:7860 表明网页版 APP 运行成功。

以 GPU 实例演示 Alibaba Cloud Linux 3 对 AI 生态的支持

点击立即免费试用云产品:https://click.aliyun.com/m/1000373503/

原文链接:https://click.aliyun.com/m/1000379727/

本文为阿里云原创内容,未经允许不得转载。

本篇关于《以 GPU 实例演示 Alibaba Cloud Linux 3 对 AI 生态的支持》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:搜狐 如有侵犯,请联系study_golang@163.com删除
AI赋能创意、投放、运营全链路,“轻舸”让营销踩上“风火轮”AI赋能创意、投放、运营全链路,“轻舸”让营销踩上“风火轮”
上一篇
AI赋能创意、投放、运营全链路,“轻舸”让营销踩上“风火轮”
引领输入法代际变革 百度输入法“超会写”打造“全场景AI创作助手”
下一篇
引领输入法代际变革 百度输入法“超会写”打造“全场景AI创作助手”
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    36次使用
  • MeowTalk喵说:AI猫咪语言翻译,增进人猫情感交流
    MeowTalk喵说
    MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
    32次使用
  • SEO标题Traini:全球首创宠物AI技术,提升宠物健康与行为解读
    Traini
    SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
    32次使用
  • 可图AI 2.0:快手旗下新一代图像生成大模型,专业创作者与普通用户的多模态创作引擎
    可图AI 2.0图片生成
    可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
    33次使用
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    48次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码