当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了

重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了

来源:51CTO.COM 2023-09-05 08:07:16 0浏览 收藏

小伙伴们有没有觉得学习科技周边很有意思?有意思就对了!今天就给大家带来《重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了》,以下内容将会涉及到,若是在学习中对其中部分知识点有疑问,或许看了本文就能帮到你!

人体动作生成任务旨在生成逼真的人体动作序列,以满足娱乐、虚拟现实、机器人技术等领域的需求。传统的生成方法包括 3D 角色创建、关键帧动画和动作捕捉等步骤,其存在诸多限制,如耗时较长,需要专业技术知识,涉及昂贵的系统和软件,不同软硬件系统之间可能存在兼容性问题等。随着深度学习的发展,人们开始尝试使用生成模型来实现人体动作序列的自动生成,例如通过输入文本描述,要求模型生成与文本要求相匹配的动作序列。随着扩散模型被引入这个领域,生成动作与给定文本的一致性不断提高。

然而,生成动作的自然程度离使用需求仍有很大差距。为了进一步提升人体动作生成算法的能力,本文在 MotionDiffuse [1] 的基础上提出了 ReMoDiffuse 算法(图 1),通过利用检索策略,找到高相关性的参考样本,提供细粒度的参考特征,从而生成更高质量的动作序列。

重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了

  • 论文链接:https://arxiv.org/pdf/2304.01116.pdf
  • GitHub:https://github.com/mingyuan-zhang/ReMoDiffuse
  • 项目主页:https://mingyuan-zhang.github.io/projects/ReMoDiffuse.html

通过巧妙地将扩散模型和创新的检索策略融合,ReMoDiffuse 为文本指导的人体动作生成注入了新的生命力。经过精心构思的模型结构,ReMoDiffuse 不仅能够创造出丰富多样、真实度高的动作序列,还能有效地满足各种长度和多粒度的动作需求。实验证明,ReMoDiffuse 在动作生成领域的多个关键指标上表现出色,显著地超越了现有算法。

重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了

图 1. ReMoDiffuse 概览

方法介绍

ReMoDiffuse 主要由两个阶段组成:检索和扩散。在检索阶段,ReMoDiffuse 使用混合检索技术,基于用户输入文本以及预期动作序列长度,从外部的多模态数据库中检索出信息丰富的样本,为动作生成提供强有力的指导。在扩散阶段,ReMoDiffuse 利用检索阶段检索到的信息,通过高效的模型结构,生成与用户输入语义一致的运动序列。

为了确保高效的检索,ReMoDiffuse 为检索阶段精心设计了以下数据流(图 2):

共有三种数据参与检索过程,分别是用户输入文本、预期动作序列长度,以及一个外部的、包含多个 对的多模态数据库。在检索最相关的样本时,ReMoDiffuse 利用公式重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了计算出每个数据库中的样本与用户输入的相似度。这里的第一项是利用预训练的 CLIP [2] 模型的文本编码器对用户输入文本和数据库实体的文本计算余弦相似度,第二项计算预期动作序列长度和数据库实体的动作序列长度之间的相对差异作为运动学相似度。计算相似度分数后,ReMoDiffuse 选择相似度排名前 k 的样本作为检索到的样本,并提取出文本特征重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了,和动作特征重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了。这两者和从用户输入的文本中提取的特征重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了 一同作为输入给扩散阶段的信号,指导动作生成。

重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了

图 2:ReMoDiffuse 的检索阶段

扩散过程(图3.c)由正向过程和逆向过程两个部分组成。在正向过程中,ReMoDiffuse 逐步将高斯噪声添加到原始动作数据中,并最终将其转化为随机噪声。逆向过程专注于除去噪声并生成逼真的动作样本。从一个随机高斯噪声开始,ReMoDiffuse 在逆向过程中的每一步都使用语义调制模块(SMT)(图3.a)来估测真实分布,并根据条件信号来逐步去除噪声。这里 SMT 中的 SMA 模块将会将所有的条件信息融入到生成的序列特征中,是本文提出的核心模块。

重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了

图 3:ReMoDiffuse 的扩散阶段

对于 SMA 层(图 3.b),我们使用了高效的注意力机制(Efficient Attention)[3] 来加速注意力模块的计算,并创造了一个更强调全局信息的全局特征图。该特征图为动作序列提供了更综合的语义线索,从而提升了模型的性能。SMA 层的核心目标是通过聚合条件信息来优化动作序列重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了的生成。在这个框架下:

1.Q 向量具体地代表了我们期望基于条件信息生成的预期动作序列重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了

2.K 向量作为一种索引机制综合考虑了多个要素,包括当前动作序列特征重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了、用户输入的语义特征重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了,以及从检索样本中获取的特征重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了。其中,重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了表示从检索样本中获取的动作序列特征,重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了表示从检索样本中获取的文本描述特征。这种综合性的构建方式保证了 K 向量在索引过程中的有效性。

3.V 向量提供了动作生成所需的实际特征。类似 K 向量,这里 V 向量也综合考虑了检索样本、用户输入以及当前动作序列。考虑到检索样本的文本描述特征与生成的动作之间没有直接关联,因此在计算 V 向量时我们选择不使用这一特征,以避免不必要的信息干扰。

结合 Efficient Attention 的全局注意力模板机制,SMA 层利用来自检索样本的辅助信息、用户文本的语义信息以及待去噪序列的特征信息,建立起一系列综合性的全局模板,使得所有条件信息能够被待生成序列充分吸收。

实验及结果

我们在两个数据集 HumanML3D [4] 和 KIT-ML [5] 上评估了 ReMoDiffuse。在与文本的一致性与动作质量两个角度上,实验结果(表 1、2)展示了我们提出的 ReMoDiffuse 框架的强大性能和优势。

重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了

表 1. 不同方法在 HumanML3D 测试集上的表现

重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了

表 2. 不同方法在 KIT-ML 测试集上的表现

以下是一些能定性展示 ReMoDiffuse 的强大性能的示例(图 4)。与之前的方法相比,例如,在给定文本 “一个人在圆圈里跳跃” 时,只有 ReMoDiffuse 能够准确捕捉到 “跳跃” 动作和 “圆圈” 路径。这表明 ReMoDiffuse 能够有效地捕捉文本细节,并将内容与给定的运动持续时间对齐。

重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了

图 4. ReMoDiffuse 生成的动作序列与其他方法生成的动作序列的比较

我们对 Guo 等人的方法 [4]、MotionDiffuse [1]、MDM [6] 以及 ReMoDiffuse 所生成的相应动作序列进行了可视化展示,并以问卷形式收集测试参与者的意见。结果的分布情况如图 5 所示。从结果中可以清晰地看出,在大多数情况下,参与测试者认为我们的方法 —— 即 ReMoDiffuse 所生成的动作序列在四个算法中最贴合所给的文本描述,也最自然流畅。

重塑人体动作生成,融合扩散模型与检索策略的新范式ReMoDiffuse来了

图 5:用户调研的结果分布

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
首钢一高炉炫酷变身 元宇宙乐园全新亮相首钢一高炉炫酷变身 元宇宙乐园全新亮相
上一篇
首钢一高炉炫酷变身 元宇宙乐园全新亮相
追觅科技机器人家族亮相IFA 2023!构建机器人产业体系化竞争力
下一篇
追觅科技机器人家族亮相IFA 2023!构建机器人产业体系化竞争力
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    3次使用
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    26次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    21次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    24次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    23次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码