当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 用BigDL-LLM 即刻加速百亿级参数LLM推理

用BigDL-LLM 即刻加速百亿级参数LLM推理

来源:51CTO.COM 2023-09-01 23:44:27 0浏览 收藏

有志者,事竟成!如果你在学习科技周边,那么本文《用BigDL-LLM 即刻加速百亿级参数LLM推理》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

我们正迈入一个由大语言模型(Large Language Model, LLM)驱动的 AI 新时代,LLM在诸如客户服务、虚拟助理、内容创作、编程辅助等各类应用中正发挥着越来越重要的作用。

然而,随着 LLM 规模不断扩大,运行大模型所需的资源消耗也越来越大,导致其运行也越来越慢,这给 AI 应用开发者带来了相当大的挑战。

为此,英特尔最近推出了一个名为BigDL-LLM[1]的大模型开源库,可助力 AI 开发者和研究者在英特尔® 平台上加速优化大语言模型,提升大语言模型在英特尔® 平台上的使用体验。

用BigDL-LLM 即刻加速百亿级参数LLM推理

下面就展示了使用 BigDL-LLM 加速过的 330 亿参数的大语言模型 Vicuna-33b-v1.3[2]在一台搭载英特尔® 至强® 铂金 8468 处理器的服务器上运行的实时效果。

用BigDL-LLM 即刻加速百亿级参数LLM推理

△在一台搭载英特尔® 至强® 铂金 8468 处理器的服务器上运行 330 亿参数大语言模型的实际速度(实时录屏)

BigDL-LLM:英特尔® 平台上的开源大语言模型加速库

BigDL-LLM 是一个专注于优化和加速大型语言模型的开源库,它是 BigDL 的一部分,并遵循 Apache 2.0 许可证发布

它提供了各种低精度优化(例如 INT4/INT5/INT8),并可利用多种英特尔® CPU集成的硬件加速技术(AVX/VNNI/AMX 等)和最新的软件优化,来赋能大语言模型在英特尔® 平台上实现更高效的优化和更为快速的运行。

BigDL-LLM 的一大重要特性是:对基于 Hugging Face Transformers API 的模型,只需改动一行代码即可对模型进行加速,理论上可以支持运行任何 Transformers 模型,这对熟悉 Transformers API 的开发者非常友好。

除了 Transformers API,很多人也会使用 LangChain 来开发大语言模型应用。

为此,BigDL-LLM 也提供便于使用的 LangChain 的集成[3],从而让开发者能够轻松使用 BigDL-LLM 来开发新应用或迁移现有的、基于 Transformers API 或 LangChain API 的应用。

此外,对于一般的 PyTorch 大语言模型(没有使用 Transformer 或 LangChain API 的模型),也可使用 BigDL-LLM optimize_model API 一键加速来提升性能。详情请参阅 GitHub README[4]以及官方文档[5]

BigDL-LLM 还提供了大量常用开源 LLM的加速样例(e.g. 使用 Transformers API 的样例[6]和使用 LangChain API 的样例[7],以及教程(包括配套 jupyter notebooks)[8] ,方便开发者快速上手尝试。

安装和使用:简便的安装过程和易用的 API 接口

安装 BigDL-LLM 非常方便,只需执行以下命令即可:

pip install --pre --upgrade bigdl-llm[all]

若代码显示不全,请左右滑动

使用 BigDL-LLM对大模型进行加速也是非常容易的(这里仅用 Transformers 风格 API 进行举例)。

使用 BigDL-LLM Transformer 风格 API 对模型加速,只需要改动模型加载部分,后续使用过程与原生 Transformers 完全一致。

而用 BigDL-LLM API 加载模型的方式与 Transformers API 也几乎一致——用户只需要更改 import,在 from_pretrained 参数中设置 load_in_4bit=True 即可。

BigDL-LLM将在模型加载过程中进行4位低精度量化,并在后续的推理过程中利用各种软硬件加速技术进行优化

#Load Hugging Face Transformers model with INT4 optimizationsfrom bigdl.llm. transformers import AutoModelForCausalLMmodel = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)

若代码显示不全,请左右滑动

示例:快速实现一个基于大语言模型的语音助手应用

下文将以 LLM 常见应用场景“语音助手”为例,展示采用 BigDL-LLM 快速实现 LLM 应用的案例。通常情况下,语音助手应用的工作流程分为以下两个部分:

用BigDL-LLM 即刻加速百亿级参数LLM推理

△图 1. 语音助手工作流程示意
  1. 语音识别——使用语音识别模型(本示例采用了 Whisper 模型[9] )将用户的语音转换为文本;
  2. 文本生成——将 1 中输出的文本作为提示语 (prompt),使用一个大语言模型(本示例采用了 Llama2[10] )生成回复。

以下是本文使用 BigDL-LLM 和 LangChain[11] 来搭建语音助手应用的过程:

语音识别阶段:第一步,加载预处理器 processor 和语音识别模型 recog_model。本示例中使用的识别模型 Whisper 是一个 Transformers 模型。

只需使用 BigDL-LLM 中的 AutoModelForSpeechSeq2Seq 并设置参数 load_in_4bit=True,就能够以 INT4 精度加载并加速这一模型,从而显著缩短模型推理用时。

#processor = WhisperProcessor .from_pretrained(recog_model_path)recog_model = AutoModelForSpeechSeq2Seq .from_pretrained(recog_model_path, load_in_4bit=True)

若代码显示不全,请左右滑动

第二步,进行语音识别。首先使用处理器从输入语音中提取输入特征,然后使用识别模型预测 token,并再次使用处理器将 token 解码为自然语言文本。

input_features = processor(frame_data,sampling_rate=audio.sample_rate,return_tensor=“pt”).input_featurespredicted_ids = recogn_model.generate(input_features, forced_decoder_ids=forced_decoder_ids)text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]

若代码显示不全,请左右滑动

文本生成阶段,首先使用 BigDL-LLM 的 TransformersLLM API 创建一个 LangChain 语言模型(TransformersLLM 是在 BigDL-LLM 中定义的语言链 LLM 集成)。

可以使用这个 API 来加载 Hugging Face Transformers 的任何模型

llm = TransformersLLM . from_model_id(model_id=llm_model_path,model_kwargs={"temperature": 0, "max_length": args.max_length, "trust_remote_code": True},)

若代码显示不全,请左右滑动

然后,创建一个正常的对话链 LLMChain,并将已经创建的 llm 设置为输入参数。

# The following code is complete the same as the use-casevoiceassistant_chain = LLMChain(llm=llm, prompt=prompt,verbose=True,memory=ConversationBufferWindowMemory(k=2),)

若代码显示不全,请左右滑动

以下代码将使用一个链条来记录所有对话历史,并将其适当地格式化为大型语言模型的输入。这样,我们可以生成合适的回复。只需将识别模型生成的文本作为 "human_input" 输入即可。代码如下:

response_text = voiceassistant_chain .predict(human_input=text, stop=”\n\n”)

若代码显示不全,请左右滑动

最后,将语音识别和文本生成步骤放入循环中,即可在多轮对话中与该“语音助手”交谈。您可访问底部 [12] 链接,查看完整的示例代码,并使用自己的电脑进行尝试。快用 BigDL-LLM 来快速搭建自己的语音助手吧!

作者简介

黄晟盛是英特尔公司的资深架构师,黄凯是英特尔公司的AI框架工程师,戴金权是英特尔院士、大数据技术全球CTO和BigDL项目的创始人,他们都从事着与大数据和AI相关的工作

今天关于《用BigDL-LLM 即刻加速百亿级参数LLM推理》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于人工智能,数据的内容请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
苹果芯跑大模型不用降计算精度,投机采样杀疯了,GPT-4也在用苹果芯跑大模型不用降计算精度,投机采样杀疯了,GPT-4也在用
上一篇
苹果芯跑大模型不用降计算精度,投机采样杀疯了,GPT-4也在用
共话人工智能时代数据安全挑战与对策 “浦江护航”数据安全上海论坛在杨浦举办
下一篇
共话人工智能时代数据安全挑战与对策 “浦江护航”数据安全上海论坛在杨浦举办
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    16次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    13次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    12次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    16次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    17次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码