当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 实现更智能的AI:将推理和行为融合于语言模型中的ReAct技术

实现更智能的AI:将推理和行为融合于语言模型中的ReAct技术

来源:51CTO.COM 2023-08-27 22:29:07 0浏览 收藏

“纵有疾风来,人生不言弃”,这句话送给正在学习科技周边的朋友们,也希望在阅读本文《实现更智能的AI:将推理和行为融合于语言模型中的ReAct技术》后,能够真的帮助到大家。我也会在后续的文章中,陆续更新科技周边相关的技术文章,有好的建议欢迎大家在评论留言,非常感谢!

今天我们要介绍一篇论文《REACT: 在语言模型中结合推理和行为》,这篇论文是由谷歌研究院和普林斯顿大学的研究人员合作完成的。他们在探索语言模型中结合推理和行为的潜力时,发布了这篇论文。虽然大型语言模型(LLM)的推理能力和行动能力已经分别进行了研究,但这是第一次将这两种能力结合到一个系统中。因此,我认为这篇论文非常重要。ReAct框架允许虚拟代理使用各种工具,如连接到web和SQL数据库,从而提供几乎无限的扩展性

实现更智能的AI:将推理和行为融合于语言模型中的ReAct技术

推理和行动的力量

人类智能的特点是将以任务为导向的行动和关于下一步行动的推理无缝结合。这种能力使我们能够快速学习新任务并做出可靠的决定,而且可以适应不可预见的情况。ReAct的目标就是在语言模型中复制这种协同作用,使它们能够以交错的方式生成推理步骤和特定于任务的操作

ReAct如何工作的

ReAct提示大型语言模型为给定任务生成口头推理历史步骤和操作。这些提示由少量的上下文示例组成,这些示例指导模型的思考和操作生成。下面的图中给出了一个上下文示例。这些例子引导代理经历一个循环过程:产生一个想法,采取一个行动,然后观察行动的结果。通过结合推理跟踪和操作,ReAct允许模型执行动态推理,这样可以生成高级计划,还可以与外部环境交互以收集额外的信息

实现更智能的AI:将推理和行为融合于语言模型中的ReAct技术

应用及结果

研究人员将ReAct应用于多种语言推理和决策任务,包括问题回答、事实验证、基于文本的游戏和网页导航。结果非常出色,ReAct在可解释性和可信赖性方面始终优于其他最先进的基线

在问答和事实验证任务中,ReAct利用与简单的Wikipedia API的交互,成功克服了推理过程中常见的幻觉和错误传播问题。它生成了类似于人类解决任务的步骤,比没有推理痕迹的基准模型更容易解释。在交互式决策基准测试中,即使只有一两个上下文示例,ReAct的表现也明显优于模仿学习和强化学习方法

尽管推理、行动和观察步骤相互交织,提高了ReAct的可靠性和可信度,但这种结构也限制了其推理步骤的灵活性,导致在某些任务上的推理错误率高于思维链提示

推理和行动的重要性

研究人员还进行了消融实验,以了解在不同任务中推理和行动的重要性。他们发现,将ReAct的内部推理和外部行为结合起来始终优于专注于推理或单独行动的基线。这凸显了整合这两个过程以获得更有效决策的价值

未来的发展方向

尽管ReAct已经取得了良好的成果,但仍有改进的空间。研究人员建议扩大ReAct的规模,以训练和操作更多的任务,并将其与强化学习等互补范例结合起来。此外,还可以使用更多的人工注释数据对模型进行微调,以进一步提高性能

结论

ReAct在开发更智能、更通用的AI系统方面迈出了一大步,并且它还支持Langchain库中一些非常有用的代理功能。通过将推理和行为结合在语言模型中,已经证明在一系列任务中性能得到了提升,同时也增强了可解释性和可信度。随着人工智能的不断发展,推理和行为的整合将在创造更具能力和适应性的人工智能系统方面起到关键作用

请提供论文的链接:

到这里,我们也就讲完了《实现更智能的AI:将推理和行为融合于语言模型中的ReAct技术》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于人工智能,语言模型的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
我们如何将 PRIMARY KEY 约束应用于现有 MySQL 表的字段?我们如何将 PRIMARY KEY 约束应用于现有 MySQL 表的字段?
上一篇
我们如何将 PRIMARY KEY 约束应用于现有 MySQL 表的字段?
AI主播协同两部门,共商防汛防台风工作在重点地区的部署
下一篇
AI主播协同两部门,共商防汛防台风工作在重点地区的部署
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    12次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    13次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    26次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    25次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    52次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码