OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包
怎么入门科技周边编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包》,涉及到,有需要的可以收藏一下
近年来,文本生成图像领域取得了许多令人惊讶的突破,许多模型都能够根据文本指令创建高质量和多样化的图像。尽管生成的图像已经非常逼真,但目前的模型通常擅长生成风景、物体等实物图像,而难以生成具有高度连贯细节的图像,例如带有汉字等复杂字形文本的图像
为了解决这个问题,来自OPPO等机构的研究者们提出了一个名为GlyphDraw的通用学习框架。该框架的目标是让模型能够生成嵌入连贯文本的图像。这项工作是图像合成领域中首个解决汉字生成问题的工作
请点击以下链接查看论文:https://arxiv.org/abs/2303.17870
项目主页链接:https://1073521013.github.io/glyph-draw.github.io/
让我们先来看一下生成效果,比如为展览馆生成警示标语:
制作广告牌:
为图片添加简要的文字说明,同时还可以多样化文字样式
还有一个有趣且实用的例子是生成表情包:
尽管结果有一些缺陷,但总体而言,该研究的生成效果已经非常出色。该研究的主要贡献包括:
该研究提出了一个名为GlyphDraw的汉字图像生成框架。在整个生成过程中,利用汉字字形和位置等辅助信息,该框架能够提供细粒度的指导,从而使得生成的汉字图像能够高质量地无缝嵌入到图像中
这项研究提出了一种有效的训练策略,通过限制预训练模型中可训练参数的数量,以防止过拟合和灾难性遗忘(catastrophic forgetting),成功地保持了模型在开放域生成方面的强大性能,并且能够准确地生成汉字图像
这项研究详细描述了构建训练数据集的过程,并提出了一种新的基准方法来评估汉字图像生成的质量。其中,GlyphDraw 的生成准确率达到了75%,明显优于之前的图像合成方法
模型介绍:
首先,该研究设计了一种复杂的图像-文本数据集构建策略。接着,利用开源图像合成算法Stable Diffusion,提出了一种通用学习框架GlyphDraw,如图2所示
稳定扩散的整体训练目标可以表示为以下公式:
GlyphDraw是基于Stable Diffusion中的交叉注意力机制的。它将原始输入的潜在向量z_t与图像的潜在向量z_t、文本掩码l_m和字形图像l_g进行级联替代
此外,通过使用特定领域的融合模块,条件 C 配备了混合字形和文本特征。引入文本掩码和字形信息,使整个训练过程实现了细粒度的扩散控制,这是提高模型性能的关键组成部分,最终能够生成带有汉字文本的图像
具体来说,文本信息的像素表征,在特别是复杂的文本形式中,如象形汉字,与自然物体存在明显的差异。举例来说,中文词语「天空(sky)」是由二维结构的多个笔画组成,而对应的自然图像是「点缀着白云的蓝天」。相比之下,汉字具有非常细粒度的特性,即使是微小的移动或变形也会导致文本渲染不正确,从而无法实现图像生成
嵌入字符到自然图像背景中还需要考虑一个关键问题,即在不影响相邻自然图像像素的情况下,精确控制文本像素的生成。为了在自然图像上展示出完美的汉字,作者设计了两个关键组件,即位置控制和字形控制,它们被集成到了扩散合成模型中
与其他模型的全局条件输入不同,字符生成需要更多地关注图像的特定局部区域,因为字符像素的潜在特征分布与自然图像像素的潜在特征分布有很大差异。为了防止模型学习崩溃,该研究创新性地提出了细粒度位置区域控制来解耦不同区域之间的分布
重写后的内容:除了位置控制之外,另一个重要问题是对汉字笔画合成进行精细控制。考虑到汉字的复杂性和多样性,在没有任何明确的先验知识的情况下,仅仅从大量的图像-文本数据集中学习是非常困难的。为了准确生成汉字,该研究将显式的字形图像作为额外的条件信息引入模型的扩散过程中
为了保持原意不变,需要将内容改写为中文,以下是改写后的内容: 研究设计和实验结果
由于此前没有专门用于汉字图像生成的数据集,该研究首先创建了一个用于定性和定量评估的基准数据集ChineseDrawText。随后,研究人员在ChineseDrawText上进行了几种方法的生成准确率测试,并通过OCR识别模型进行评估
该研究提出的GlyphDraw模型通过充分利用辅助字形和位置信息,达到了平均准确率为75%的出色效果,证明了该模型在字符图像生成方面的卓越能力。下图展示了几种方法的可视化比较结果
此外,GlyphDraw还可以通过限制训练参数来保持开放域图像合成性能,在MS-COCO FID-10k上一般图像合成的FID仅下降了2.3

感兴趣的读者可以阅读论文原文,了解更多研究细节。
到这里,我们也就讲完了《OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于理论的知识点!

- 上一篇
- 折叠屏手机"荣耀Magic Vs2":荣耀品牌新机惊艳亮相

- 下一篇
- OceanBase在公有云市场的一年:在激烈竞争中脱颖而出
-
- 科技周边 · 人工智能 | 10小时前 |
- 小米SU7订单18万未交付,月产能暴增6倍
- 361浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 | iPhone17Pro 天蓝色 M4MacBookAir
- iPhone17Pro/ProMax弃钛金属,拥抱天蓝色
- 272浏览 收藏
-
- 科技周边 · 人工智能 | 13小时前 |
- 问界M8快报:MAX+版最火,BAL车主热捧
- 335浏览 收藏
-
- 科技周边 · 人工智能 | 15小时前 |
- 港大与Adobe联手推出PixelFlow图像生成模型
- 135浏览 收藏
-
- 科技周边 · 人工智能 | 17小时前 | 摩尔线程 招聘诈骗 @mthreads.com 官方客服 法律责任
- 摩尔线程重磅声明发布
- 406浏览 收藏
-
- 科技周边 · 人工智能 | 20小时前 |
- 玛莎拉蒂GT2Stradale国内首秀售414.5万
- 226浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 谱乐AI
- 谱乐AI是由青岛艾夫斯科技有限公司开发的AI音乐生成工具,采用Suno和Udio模型,支持多种音乐风格的创作。访问https://yourmusic.fun/,体验智能作曲与编曲,个性化定制音乐,提升创作效率。
- 2次使用
-
- Vozo AI
- 探索Vozo AI,一款功能强大的在线AI视频换脸工具,支持跨性别、年龄和肤色换脸,适用于广告本地化、电影制作和创意内容创作,提升您的视频制作效率和效果。
- 2次使用
-
- AIGAZOU-AI图像生成
- AIGAZOU是一款先进的免费AI图像生成工具,无需登录即可使用,支持中文提示词,生成高清图像。适用于设计、内容创作、商业和艺术领域,提供自动提示词、专家模式等多种功能。
- 2次使用
-
- Raphael AI
- 探索Raphael AI,一款由Flux.1 Dev支持的免费AI图像生成器,无需登录即可无限生成高质量图像。支持多种风格,快速生成,保护隐私,适用于艺术创作、商业设计等多种场景。
- 2次使用
-
- Canva可画AI生图
- Canva可画AI生图利用先进AI技术,根据用户输入的文字描述生成高质量图片和插画。适用于设计师、创业者、自由职业者和市场营销人员,提供便捷、高效、多样化的视觉素材生成服务,满足不同需求。
- 1次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览