如何在 Pandas 的 SQL 查询样式中选择数据子集?
小伙伴们有没有觉得学习数据库很有意思?有意思就对了!今天就给大家带来《如何在 Pandas 的 SQL 查询样式中选择数据子集?》,以下内容将会涉及到,若是在学习中对其中部分知识点有疑问,或许看了本文就能帮到你!
简介
在这篇文章中,我将向您展示如何使用 Pandas 通过 SQL 样式过滤来执行数据分析。大多数企业数据都存储在需要 SQL 来检索和操作的数据库中。例如,像 Oracle、IBM、Microsoft 这样的公司拥有自己的数据库和自己的 SQL 实现。
数据科学家必须在其职业生涯的某个阶段处理 SQL,因为数据并不总是存储在CSV 文件。我个人更喜欢使用 Oracle,因为我公司的大部分数据都存储在 Oracle 中。
场景 – 1 假设我们有一个任务,从我们的电影中查找所有电影具有以下条件的数据集。
- 电影的语言应该是英语(en)或西班牙语(es)。
- 电影的受欢迎程度必须介于 500 到 1000 之间。
- 电影的状态必须已发布。
- 投票数必须大于 5000。对于上述场景,SQL 语句类似于如下。
SELECT FROM WHERE title AS movie_title ,original_language AS movie_language ,popularityAS movie_popularity ,statusAS movie_status ,vote_count AS movie_vote_count movies_data original_languageIN ('en', 'es') AND status=('Released') AND popularitybetween 500 AND 1000 AND vote_count > 5000;
现在你已经看到了满足需求的SQL语句,让我们使用pandas一步一步地进行操作。我将向你展示两种方法。
方法1:布尔索引
1. 将movies_data数据集加载到DataFrame中。
import pandas as pd movies = pd.read_csv("https://raw.githubusercontent.com/sasankac/TestDataSet/master/movies_data.csv")
为每个条件分配一个变量。
languages = [ "en" , "es" ] condition_on_languages = movies . original_language . isin ( languages ) condition_on_status = movies . status == "Released" condition_on_popularity = movies . popularity . between ( 500 , 1000 ) condition_on_votecount = movies . vote_count > 5000
3.将所有条件(布尔数组)组合在一起。
final_conditions = ( condition_on_languages & condition_on_status & condition_on_popularity & condition_on_votecount ) columns = [ "title" , "original_language" , "status" , "popularity" , "vote_count" ] # clubbing all together movies . loc [ final_conditions , columns ]
标题 | original_language | 状态 | 受欢迎程度 | vote_count |
---|---|---|---|---|
95星际 | zh | 已发布 | 724.247784 | 10867 |
788死侍 | zh | 已发布 | 514.569956 | 10995 |
方法2:- .query()方法。
.query()方法是SQL where子句样式过滤数据的方法。条件可以作为字符串传递给此方法,但是,列名称不得包含任何空格。
如果列名称中有空格,请使用 python 替换函数将其替换为下划线。
根据我的经验,我发现 query() 方法在应用于较大的 DataFrame 时比以前的方法更快。
import pandas as pd movies = pd . read_csv ( "https://raw.githubusercontent.com/sasankac/TestDataSet/master/movies_data.csv" )
4.构建查询字符串并执行该方法。
请注意,.query 方法不适用于跨越多行的三重引号字符串。
final_conditions = ( "original_language in ['en','es']" "and status == 'Released' " "and popularity > 500 " "and popularity < 1000" "and vote_count > 5000" ) final_result = movies . query ( final_conditions ) final_result
预算 | id | original_language | original_title | 受欢迎程度 | 发布日期 | 收入 | 运行时 | st | |
---|---|---|---|---|---|---|---|---|---|
95 | 165000000 | 157336 | zh | 星际 | 724.247784 | 2014年5月11日 | 675120017 | 169.0 | 关系 |
788 | 58000000 | 293660zh | 死侍 | 514.569956 p> | 2016年9月2日 | 783112979 | 108.0 | 关系 |
您还可以以编程方式将值创建为 Python 列表,并将它们与 (@) 一起使用。
movie_languages = [ 'en' , 'es' ] final_conditions = ( "original_language in @movie_languages " "and status == 'Released' " "and popularity > 500 " "and popularity < 1000" "and vote_count > 5000" ) final_result = movies . query ( final_conditions ) final_result
预算 | id | original_language | original_title | 受欢迎程度 | 发布日期 | 收入 | 运行时 | st | |
---|---|---|---|---|---|---|---|---|---|
95 | 165000000 | 157336 | zh | 星际 | 724.247784 | 2014年5月11日 | 675120017 | 169.0 | 关系 |
788 | 58000000 | 293660zh | 死侍 | 514.569956 p> | 2016年9月2日 | 783112979 | 108.0 | 关系 |
今天关于《如何在 Pandas 的 SQL 查询样式中选择数据子集?》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

- 上一篇
- MySQL标准合规性

- 下一篇
- MySQL bin 目录位于 Windows 操作系统中的哪里?
-
- 数据库 · MySQL | 19分钟前 |
- MySQL命令行建表完整步骤详解
- 250浏览 收藏
-
- 数据库 · MySQL | 44分钟前 |
- MySQL索引优化与性能提升技巧
- 210浏览 收藏
-
- 数据库 · MySQL | 6小时前 |
- MySQL设置外键的建表教程
- 208浏览 收藏
-
- 数据库 · MySQL | 1天前 |
- MySQL读写分离方案与中间件解析
- 413浏览 收藏
-
- 数据库 · MySQL | 1天前 |
- 主键与唯一键区别,如何选主键?
- 367浏览 收藏
-
- 数据库 · MySQL | 1天前 |
- MySQL中英文界面切换方法详解
- 148浏览 收藏
-
- 数据库 · MySQL | 1天前 |
- MySQL查询优化技巧大全
- 141浏览 收藏
-
- 数据库 · MySQL | 1天前 |
- MySQL数据库特点与优势详解
- 165浏览 收藏
-
- 数据库 · MySQL | 1天前 |
- MySQL中文界面设置方法详解
- 157浏览 收藏
-
- 数据库 · MySQL | 2天前 |
- MySQL无法启动?8个排查方法全解析
- 174浏览 收藏
-
- 数据库 · MySQL | 2天前 |
- 主键与唯一键区别,如何选主键?
- 166浏览 收藏
-
- 数据库 · MySQL | 2天前 |
- MySQL多表连接优化技巧与实战策略
- 221浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 104次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 98次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 117次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 107次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 111次使用
-
- MySQL主从切换的超详细步骤
- 2023-01-01 501浏览
-
- Mysql-普通索引的 change buffer
- 2023-01-25 501浏览
-
- MySQL高级进阶sql语句总结大全
- 2022-12-31 501浏览
-
- Mysql报错:message from server: * is blocked because of many
- 2023-02-24 501浏览
-
- 腾讯云大佬亲码“redis深度笔记”,不讲一句废话,全是精华
- 2023-02-22 501浏览