Golang图像处理:如何进行图片的凸包检测和轮廓拟合
2023-08-25 13:52:08
0浏览
收藏
从现在开始,我们要努力学习啦!今天我给大家带来《Golang图像处理:如何进行图片的凸包检测和轮廓拟合》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!
Golang图像处理:如何进行图片的凸包检测和轮廓拟合
摘要:图像处理是计算机视觉领域的重要研究方向之一。本文将介绍如何使用Golang进行图像的凸包检测和轮廓拟合,并提供相关代码示例。
引言:图像处理是计算机视觉领域的重要应用之一。在图像处理过程中,凸包检测和轮廓拟合是非常常见的操作,可用于目标识别、边缘检测等应用。本文将重点介绍如何使用Golang进行图像的凸包检测和轮廓拟合。
第一部分:凸包检测
凸包是一个包含所有点的最小凸多边形。在图像处理中,我们可以使用凸包来识别目标的形状,进行目标的定位、分割等操作。下面是一个简单的示例代码:
package main import ( "fmt" "image" "image/color" "image/draw" "image/jpeg" "log" "os" "github.com/disintegration/imaging" "github.com/llgcode/draw2d/draw2dimg" "github.com/nfnt/resize" ) func ConvexHullDetection(inputPath, outputPath string) { // 加载图像 inputImg, err := imaging.Open(inputPath) if err != nil { log.Fatal(err) } // 将图像大小调整为指定尺寸 resizedImg := resize.Resize(800, 0, inputImg, resize.Lanczos3) // 将图像转换为灰度图 grayImg := imaging.Grayscale(resizedImg) // 二值化处理 binaryImg := imaging.AdjustContrast(grayImg, 20) // 构建图像的矩形区域 rectangle := image.Rect(0, 0, binaryImg.Bounds().Size().X, binaryImg.Bounds().Size().Y) // 创建画布 canvas := image.NewRGBA(rectangle) draw.Draw(canvas, canvas.Bounds(), binaryImg, image.Point{}, draw.Src) // 构建凸包路径 path := draw2dimg.NewGraphicsPath() // 遍历每个像素点 bounds := binaryImg.Bounds() for x := bounds.Min.X; x < bounds.Max.X; x++ { for y := bounds.Min.Y; y < bounds.Max.Y; y++ { // 获取像素值 r, _, _, _ := canvas.At(x, y).RGBA() // 如果像素为黑色,则添加到凸包路径中 if r < 65535/2 { path.LineTo(float64(x), float64(y)) } } } // 进行凸包检测 path.Close() hull := path.ConvexHull() // 绘制凸包 context := draw2dimg.NewGraphicContext(canvas) context.SetStrokeColor(color.RGBA{R: 255, G: 0, B: 0, A: 255}) context.SetLineWidth(2) for _, point := range hull { context.LineTo(float64(point.X), float64(point.Y)) } context.Stroke() // 保存图像 outputFile, err := os.Create(outputPath) if err != nil { log.Fatal(err) } defer outputFile.Close() err = jpeg.Encode(outputFile, canvas, &jpeg.Options{Quality: 100}) if err != nil { log.Fatal(err) } } func main() { inputPath := "input.jpg" outputPath := "output.jpg" ConvexHullDetection(inputPath, outputPath) fmt.Println("凸包检测完成!") }
代码解析:
- 首先,我们使用imaging库加载图像,并将图像大小调整为指定尺寸。
- 接下来,我们将图像转换为灰度图,然后进行二值化处理。
- 创建画布,并将二值化后的图像绘制在画布上。
- 构建一个凸包路径,并遍历图像的每个像素点,如果像素点为黑色,则添加到凸包路径中。
- 最后,进行凸包检测并绘制凸包,将结果保存为图像文件。
第二部分:轮廓拟合
轮廓拟合是对目标的边缘进行拟合,得到目标的几何形状。下面是一个简单的示例代码:
package main import ( "fmt" "image" "image/color" "image/draw" "image/jpeg" "log" "os" "github.com/disintegration/imaging" "github.com/llgcode/draw2d/draw2dimg" "github.com/nfnt/resize" ) func ContourFitting(inputPath, outputPath string) { // 加载图像 inputImg, err := imaging.Open(inputPath) if err != nil { log.Fatal(err) } // 将图像大小调整为指定尺寸 resizedImg := resize.Resize(800, 0, inputImg, resize.Lanczos3) // 将图像转换为灰度图 grayImg := imaging.Grayscale(resizedImg) // 二值化处理 binaryImg := imaging.AdjustContrast(grayImg, 20) // 构建图像的矩形区域 rectangle := image.Rect(0, 0, binaryImg.Bounds().Size().X, binaryImg.Bounds().Size().Y) // 创建画布 canvas := image.NewRGBA(rectangle) draw.Draw(canvas, canvas.Bounds(), binaryImg, image.Point{}, draw.Src) // 构建轮廓路径 path := draw2dimg.NewGraphicsPath() // 遍历每个像素点 bounds := binaryImg.Bounds() for x := bounds.Min.X; x < bounds.Max.X; x++ { for y := bounds.Min.Y; y < bounds.Max.Y; y++ { // 获取像素值 r, _, _, _ := canvas.At(x, y).RGBA() // 如果像素为黑色,则添加到轮廓路径中 if r < 65535/2 { path.LineTo(float64(x), float64(y)) } } } // 进行轮廓拟合 fitting := path.FitPath(5) // 绘制轮廓 context := draw2dimg.NewGraphicContext(canvas) context.SetStrokeColor(color.RGBA{R: 255, G: 0, B: 0, A: 255}) context.SetLineWidth(2) for _, bezier := range fitting { context.CubicBezierTo( float64(bezier.Control1.X), float64(bezier.Control1.Y), float64(bezier.Control2.X), float64(bezier.Control2.Y), float64(bezier.To.X), float64(bezier.To.Y)) } context.Stroke() // 保存图像 outputFile, err := os.Create(outputPath) if err != nil { log.Fatal(err) } defer outputFile.Close() err = jpeg.Encode(outputFile, canvas, &jpeg.Options{Quality: 100}) if err != nil { log.Fatal(err) } } func main() { inputPath := "input.jpg" outputPath := "output.jpg" ContourFitting(inputPath, outputPath) fmt.Println("轮廓拟合完成!") }
代码解析:
- 类似于凸包检测,我们首先加载图像并将其调整为指定尺寸。
- 转换图像为灰度图,并进行二值化处理。
- 创建画布,并将二值化后的图像绘制在画布上。
- 构建一个轮廓路径,并遍历图像的每个像素点,如果像素点为黑色,则添加到轮廓路径中。
- 进行轮廓拟合,并将结果绘制在画布上,并保存为图像文件。
结论:
本文介绍了如何使用Golang进行图像的凸包检测和轮廓拟合,并提供了相关的代码示例。图像处理是计算机视觉领域中重要的应用之一,掌握图像处理的基本算法对于理解和应用计算机视觉技术具有重要意义。希望本文能够对读者在图像处理领域的学习和研究提供帮助。
今天关于《Golang图像处理:如何进行图片的凸包检测和轮廓拟合》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

- 上一篇
- 华为OceanStor Pacific分布式存储荣获“AI存力底座最佳创新奖”标题的重写:华为OceanStor Pacific分布式存储获得“AI存储创新奖”的荣誉

- 下一篇
- Golang实现百度AI接口:一起探索吧!
查看更多
最新文章
-
- Golang · Go教程 | 2分钟前 |
- Golang内存优化技巧分享
- 398浏览 收藏
-
- Golang · Go教程 | 8分钟前 |
- Go语言BitSet高效实现:math/big.Int位操作技巧
- 422浏览 收藏
-
- Golang · Go教程 | 10分钟前 |
- Golang集成Milvus/Weaviate向量库教程
- 375浏览 收藏
-
- Golang · Go教程 | 14分钟前 |
- Go语言接口设计与算法实现技巧
- 375浏览 收藏
-
- Golang · Go教程 | 20分钟前 |
- Golang错误添加上下文,fmt.Errorf与%w使用教程
- 135浏览 收藏
-
- Golang · Go教程 | 21分钟前 |
- Golang反射获取返回类型详解
- 307浏览 收藏
-
- Golang · Go教程 | 24分钟前 |
- GolangRPC优化技巧与实现方法
- 166浏览 收藏
-
- Golang · Go教程 | 41分钟前 |
- Go切片高效多元素删除技巧
- 206浏览 收藏
-
- Golang · Go教程 | 58分钟前 |
- Golang限流实现:令牌桶与漏桶算法详解
- 197浏览 收藏
-
- Golang · Go教程 | 59分钟前 |
- Go模块API文档生成指南:godoc使用与注释规范
- 488浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 100次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 92次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 111次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 103次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 104次使用
查看更多
相关文章
-
- Golangmap实践及实现原理解析
- 2022-12-28 505浏览
-
- 试了下Golang实现try catch的方法
- 2022-12-27 502浏览
-
- Go语言中Slice常见陷阱与避免方法详解
- 2023-02-25 501浏览
-
- Golang中for循环遍历避坑指南
- 2023-05-12 501浏览
-
- Go语言中的RPC框架原理与应用
- 2023-06-01 501浏览