当前位置:首页 > 文章列表 > Golang > Go教程 > Golang图像处理:如何进行图片的凸包检测和轮廓拟合

Golang图像处理:如何进行图片的凸包检测和轮廓拟合

2023-08-25 13:52:08 0浏览 收藏

从现在开始,我们要努力学习啦!今天我给大家带来《Golang图像处理:如何进行图片的凸包检测和轮廓拟合》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!

Golang图像处理:如何进行图片的凸包检测和轮廓拟合

摘要:图像处理是计算机视觉领域的重要研究方向之一。本文将介绍如何使用Golang进行图像的凸包检测和轮廓拟合,并提供相关代码示例。

引言:图像处理是计算机视觉领域的重要应用之一。在图像处理过程中,凸包检测和轮廓拟合是非常常见的操作,可用于目标识别、边缘检测等应用。本文将重点介绍如何使用Golang进行图像的凸包检测和轮廓拟合。

第一部分:凸包检测

凸包是一个包含所有点的最小凸多边形。在图像处理中,我们可以使用凸包来识别目标的形状,进行目标的定位、分割等操作。下面是一个简单的示例代码:

package main

import (
    "fmt"
    "image"
    "image/color"
    "image/draw"
    "image/jpeg"
    "log"
    "os"

    "github.com/disintegration/imaging"
    "github.com/llgcode/draw2d/draw2dimg"
    "github.com/nfnt/resize"
)

func ConvexHullDetection(inputPath, outputPath string) {
    // 加载图像
    inputImg, err := imaging.Open(inputPath)
    if err != nil {
        log.Fatal(err)
    }

    // 将图像大小调整为指定尺寸
    resizedImg := resize.Resize(800, 0, inputImg, resize.Lanczos3)

    // 将图像转换为灰度图
    grayImg := imaging.Grayscale(resizedImg)

    // 二值化处理
    binaryImg := imaging.AdjustContrast(grayImg, 20)

    // 构建图像的矩形区域
    rectangle := image.Rect(0, 0, binaryImg.Bounds().Size().X, binaryImg.Bounds().Size().Y)

    // 创建画布
    canvas := image.NewRGBA(rectangle)
    draw.Draw(canvas, canvas.Bounds(), binaryImg, image.Point{}, draw.Src)

    // 构建凸包路径
    path := draw2dimg.NewGraphicsPath()

    // 遍历每个像素点
    bounds := binaryImg.Bounds()
    for x := bounds.Min.X; x < bounds.Max.X; x++ {
        for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
            // 获取像素值
            r, _, _, _ := canvas.At(x, y).RGBA()

            // 如果像素为黑色,则添加到凸包路径中
            if r < 65535/2 {
                path.LineTo(float64(x), float64(y))
            }
        }
    }

    // 进行凸包检测
    path.Close()
    hull := path.ConvexHull()

    // 绘制凸包
    context := draw2dimg.NewGraphicContext(canvas)
    context.SetStrokeColor(color.RGBA{R: 255, G: 0, B: 0, A: 255})
    context.SetLineWidth(2)
    for _, point := range hull {
        context.LineTo(float64(point.X), float64(point.Y))
    }
    context.Stroke()

    // 保存图像
    outputFile, err := os.Create(outputPath)
    if err != nil {
        log.Fatal(err)
    }
    defer outputFile.Close()

    err = jpeg.Encode(outputFile, canvas, &jpeg.Options{Quality: 100})
    if err != nil {
        log.Fatal(err)
    }
}

func main() {
    inputPath := "input.jpg"
    outputPath := "output.jpg"
    ConvexHullDetection(inputPath, outputPath)
    fmt.Println("凸包检测完成!")
}

代码解析:

  1. 首先,我们使用imaging库加载图像,并将图像大小调整为指定尺寸。
  2. 接下来,我们将图像转换为灰度图,然后进行二值化处理。
  3. 创建画布,并将二值化后的图像绘制在画布上。
  4. 构建一个凸包路径,并遍历图像的每个像素点,如果像素点为黑色,则添加到凸包路径中。
  5. 最后,进行凸包检测并绘制凸包,将结果保存为图像文件。

第二部分:轮廓拟合

轮廓拟合是对目标的边缘进行拟合,得到目标的几何形状。下面是一个简单的示例代码:

package main

import (
    "fmt"
    "image"
    "image/color"
    "image/draw"
    "image/jpeg"
    "log"
    "os"

    "github.com/disintegration/imaging"
    "github.com/llgcode/draw2d/draw2dimg"
    "github.com/nfnt/resize"
)

func ContourFitting(inputPath, outputPath string) {
    // 加载图像
    inputImg, err := imaging.Open(inputPath)
    if err != nil {
        log.Fatal(err)
    }

    // 将图像大小调整为指定尺寸
    resizedImg := resize.Resize(800, 0, inputImg, resize.Lanczos3)

    // 将图像转换为灰度图
    grayImg := imaging.Grayscale(resizedImg)

    // 二值化处理
    binaryImg := imaging.AdjustContrast(grayImg, 20)

    // 构建图像的矩形区域
    rectangle := image.Rect(0, 0, binaryImg.Bounds().Size().X, binaryImg.Bounds().Size().Y)

    // 创建画布
    canvas := image.NewRGBA(rectangle)
    draw.Draw(canvas, canvas.Bounds(), binaryImg, image.Point{}, draw.Src)

    // 构建轮廓路径
    path := draw2dimg.NewGraphicsPath()

    // 遍历每个像素点
    bounds := binaryImg.Bounds()
    for x := bounds.Min.X; x < bounds.Max.X; x++ {
        for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
            // 获取像素值
            r, _, _, _ := canvas.At(x, y).RGBA()

            // 如果像素为黑色,则添加到轮廓路径中
            if r < 65535/2 {
                path.LineTo(float64(x), float64(y))
            }
        }
    }

    // 进行轮廓拟合
    fitting := path.FitPath(5)

    // 绘制轮廓
    context := draw2dimg.NewGraphicContext(canvas)
    context.SetStrokeColor(color.RGBA{R: 255, G: 0, B: 0, A: 255})
    context.SetLineWidth(2)
    for _, bezier := range fitting {
        context.CubicBezierTo(
            float64(bezier.Control1.X), float64(bezier.Control1.Y),
            float64(bezier.Control2.X), float64(bezier.Control2.Y),
            float64(bezier.To.X), float64(bezier.To.Y))
    }
    context.Stroke()

    // 保存图像
    outputFile, err := os.Create(outputPath)
    if err != nil {
        log.Fatal(err)
    }
    defer outputFile.Close()

    err = jpeg.Encode(outputFile, canvas, &jpeg.Options{Quality: 100})
    if err != nil {
        log.Fatal(err)
    }
}

func main() {
    inputPath := "input.jpg"
    outputPath := "output.jpg"
    ContourFitting(inputPath, outputPath)
    fmt.Println("轮廓拟合完成!")
}

代码解析:

  1. 类似于凸包检测,我们首先加载图像并将其调整为指定尺寸。
  2. 转换图像为灰度图,并进行二值化处理。
  3. 创建画布,并将二值化后的图像绘制在画布上。
  4. 构建一个轮廓路径,并遍历图像的每个像素点,如果像素点为黑色,则添加到轮廓路径中。
  5. 进行轮廓拟合,并将结果绘制在画布上,并保存为图像文件。

结论:
本文介绍了如何使用Golang进行图像的凸包检测和轮廓拟合,并提供了相关的代码示例。图像处理是计算机视觉领域中重要的应用之一,掌握图像处理的基本算法对于理解和应用计算机视觉技术具有重要意义。希望本文能够对读者在图像处理领域的学习和研究提供帮助。

今天关于《Golang图像处理:如何进行图片的凸包检测和轮廓拟合》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

华为OceanStor Pacific分布式存储荣获“AI存力底座最佳创新奖”标题的重写:华为OceanStor Pacific分布式存储获得“AI存储创新奖”的荣誉华为OceanStor Pacific分布式存储荣获“AI存力底座最佳创新奖”标题的重写:华为OceanStor Pacific分布式存储获得“AI存储创新奖”的荣誉
上一篇
华为OceanStor Pacific分布式存储荣获“AI存力底座最佳创新奖”标题的重写:华为OceanStor Pacific分布式存储获得“AI存储创新奖”的荣誉
Golang实现百度AI接口:一起探索吧!
下一篇
Golang实现百度AI接口:一起探索吧!
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    24次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    38次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    38次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    50次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    41次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码