基于Spring Cache如何实现Caffeine+Redis二级缓存
一分耕耘,一分收获!既然打开了这篇文章《基于Spring Cache如何实现Caffeine+Redis二级缓存》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!
具体如下:

一、聊聊什么是硬编码使用缓存?
在学习Spring Cache之前,笔者经常会硬编码的方式使用缓存。
我们来举个实际中的例子,为了提升用户信息的查询效率,我们对用户信息使用了缓存,示例代码如下:
@Autowire
private UserMapper userMapper;
@Autowire
private RedisCache redisCache;
//查询用户
public User getUserById(Long userId) {
//定义缓存key
String cacheKey = "userId_" + userId;
//先查询redis缓存
User user = redisCache.get(cacheKey);
//如果缓存中有就直接返回,不再查询数据库
if (user != null) {
return user;
}
//没有再查询数据库
user = userMapper.getUserById(userId);
//数据存入缓存,这样下次查询就能到缓存中获取
if (user != null) {
stringCommand.set(cacheKey, user);
}
return user;
}相信很多同学都写过类似风格的代码,这种风格符合面向过程的编程思维,非常容易理解。但它也有一些缺点:
代码不够优雅。业务逻辑有四个典型动作:存储,读取,修改,删除。每次操作都需要定义缓存Key ,调用缓存命令的API,产生较多的重复代码;
缓存操作和业务逻辑之间的代码耦合度高,对业务逻辑有较强的侵入性。侵入性主要体现如下两点:
开发联调阶段,需要去掉缓存,只能注释或者临时删除缓存操作代码,也容易出错;
某些场景下,需要更换缓存组件,每个缓存组件有自己的API,更换成本颇高。
如果说是下面这样的,是不是就优雅多了。
@Mapper
public interface UserMapper {
/**
* 根据用户id获取用户信息
*
* 如果缓存中有直接返回缓存数据,如果没有那么就去数据库查询,查询完再插入缓存中,这里缓存的key前缀为cache_user_id_,+传入的用户ID
*/
@Cacheable(key = "'cache_user_id_' + #userId")
User getUserById(Long userId);
}再看实现类
@Autowire
private UserMapper userMapper;
//查询用户
public User getUserById(Long userId) {
return userMapper.getUserById(userId);
}这么一看是不是完全和缓存分离开来,如果开发联调阶段,需要去掉缓存那么直接注释掉注解就好了,是不是非常完美。
而且这一整套实现都不要自己手动写,Spring Cache就已经帮我定义好相关注解和接口,我们可以轻易实现上面的功能。
二、Spring Cache简介
Spring Cache是Spring-context包中提供的基于注解方式使用的缓存组件,定义了一些标准接口,通过实现这些接口,就可以通过在
方法上增加注解来实现缓存。这样就能够避免缓存代码与业务处理耦合在一起的问题。
Spring Cache核心的接口就两个:Cache和CacheManager
1、Cache接口
该接口定义提供缓存的具体操作,比如缓存的放入、读取、清理:
package org.Springframework.cache;
import java.util.concurrent.Callable;
public interface Cache {
// cacheName,缓存的名字,默认实现中一般是CacheManager创建Cache的bean时传入cacheName
String getName();
//得到底层使用的缓存,如Ehcache
Object getNativeCache();
// 通过key获取缓存值,注意返回的是ValueWrapper,为了兼容存储空值的情况,将返回值包装了一层,通过get方法获取实际值
ValueWrapper get(Object key);
// 通过key获取缓存值,返回的是实际值,即方法的返回值类型
<T> T get(Object key, Class<T> type);
// 通过key获取缓存值,可以使用valueLoader.call()来调使用@Cacheable注解的方法。当@Cacheable注解的sync属性配置为true时使用此方法。
// 因此方法内需要保证回源到数据库的同步性。避免在缓存失效时大量请求回源到数据库
<T> T get(Object key, Callable<T> valueLoader);
// 将@Cacheable注解方法返回的数据放入缓存中
void put(Object key, Object value);
// 当缓存中不存在key时才放入缓存。返回值是当key存在时原有的数据
ValueWrapper putIfAbsent(Object key, Object value);
// 删除缓存
void evict(Object key);
// 清空缓存
void clear();
// 缓存返回值的包装
interface ValueWrapper {
// 返回实际缓存的对象
Object get();
}
}2、CacheManager接口
主要提供Cache实现bean的创建,每个应用里可以通过cacheName来对Cache进行隔离,每个cacheName对应一个Cache实现。
package org.Springframework.cache;
import java.util.Collection;
public interface CacheManager {
// 通过cacheName创建Cache的实现bean,具体实现中需要存储已创建的Cache实现bean,避免重复创建,也避免内存缓存
//对象(如Caffeine)重新创建后原来缓存内容丢失的情况
Cache getCache(String name);
// 返回所有的cacheName
Collection<String> getCacheNames();
}3、常用注解说明
@Cacheable:主要应用到查询数据的方法上。
public @interface Cacheable {
// cacheNames,CacheManager就是通过这个名称创建对应的Cache实现bean
@AliasFor("cacheNames")
String[] value() default {};
@AliasFor("value")
String[] cacheNames() default {};
// 缓存的key,支持SpEL表达式。默认是使用所有参数及其计算的hashCode包装后的对象(SimpleKey)
String key() default "";
// 缓存key生成器,默认实现是SimpleKeyGenerator
String keyGenerator() default "";
// 指定使用哪个CacheManager,如果只有一个可以不用指定
String cacheManager() default "";
// 缓存解析器
String cacheResolver() default "";
// 缓存的条件,支持SpEL表达式,当达到满足的条件时才缓存数据。在调用方法前后都会判断
String condition() default "";
// 满足条件时不更新缓存,支持SpEL表达式,只在调用方法后判断
String unless() default "";
// 回源到实际方法获取数据时,是否要保持同步,如果为false,调用的是Cache.get(key)方法;如果为true,调用的是Cache.get(key, Callable)方法
boolean sync() default false;
}@CacheEvict:清除缓存,主要应用到删除数据的方法上。相比Cacheable多了两个属性
public @interface CacheEvict {
// ...相同属性说明请参考@Cacheable中的说明
// 是否要清除所有缓存的数据,为false时调用的是Cache.evict(key)方法;为true时调用的是Cache.clear()方法
boolean allEntries() default false;
// 调用方法之前或之后清除缓存
boolean beforeInvocation() default false;
}@CachePut:放入缓存,主要用到对数据有更新的方法上。属性说明参考@Cacheable
@Caching:用于在一个方法上配置多种注解
@EnableCaching:启用Spring cache缓存,作为总的开关,在SpringBoot的启动类或配置类上需要加上此注解才会生效
三、使用二级缓存需要思考的一些问题?
我们知道关系数据库(Mysql)数据最终存储在磁盘上,如果每次都从数据库里去读取,会因为磁盘本身的IO影响读取速度,所以就有了
像redis这种的内存缓存。
通过内存缓存确实能够很大程度的提高查询速度,但如果同一查询并发量非常的大,频繁的查询redis,也会有明显的网络IO上的消耗,
那我们针对这种查询非常频繁的数据(热点key),我们是不是可以考虑存到应用内缓存,如:caffeine。
当应用内缓存有符合条件的数据时,就可以直接使用,而不用通过网络到redis中去获取,这样就形成了两级缓存。
应用内缓存叫做一级缓存,远程缓存(如redis)叫做二级缓存。
整个流程如下

流程看着是很清新,但其实二级缓存需要考虑的点还很多。
1.如何保证分布式节点一级缓存的一致性?
我们说一级缓存是应用内缓存,那么当你的项目部署在多个节点的时候,如何保证当你对某个key进行修改删除操作时,使其它节点
的一级缓存一致呢?
2.是否允许存储空值?
这个确实是需要考虑的点。因为如果某个查询缓存和数据库中都没有,那么就会导致频繁查询数据库,导致数据库Down,这也是我们
常说的缓存穿透。
但如果存储空值呢,因为可能会存储大量的空值,导致缓存变大,所以这个最好是可配置,按照业务来决定是否开启。
3.是否需要缓存预热?
也就是说,我们会觉得某些key一开始就会非常的热,也就是热点数据,那么我们是否可以一开始就先存储到缓存中,避免缓存击穿。
4.一级缓存存储数量上限的考虑?
既然一级缓存是应用内缓存,那你是否考虑一级缓存存储的数据给个限定最大值,避免存储太多的一级缓存导致OOM。
5.一级缓存过期策略的考虑?
我们说redis作为二级缓存,redis是淘汰策略来管理的。具体可参考redis的8种淘汰策略。那你的一级缓存策略呢?就好比你设置一级缓存
数量最大为5000个,那当第5001个进来的时候,你是怎么处理呢?是直接不保存,还是说自定义LRU或者LFU算法去淘汰之前的数据?
6.一级缓存过期了如何清除?
我们说redis作为二级缓存,我们有它的缓存过期策略(定时、定期、惰性),那你的一级缓存呢,过期如何清除呢?
这里4、5、6小点如果说用我们传统的Map显然实现是很费劲的,但现在有更好用的一级缓存库那就是Caffeine。
四、Caffeine 简介
Caffeine,一个用于Java的高性能缓存库。
缓存和Map之间的一个根本区别是缓存会清理存储的项目。
1、写入缓存策略
Caffeine有三种缓存写入策略:手动、同步加载和异步加载。
2、缓存值的清理策略
Caffeine有三种缓存值的清理策略:基于大小、基于时间和基于引用。
基于容量:当缓存大小超过配置的大小限制时会发生回收。
基于时间:
写入后到期策略。
访问后过期策略。
到期时间由 Expiry 实现独自计算。
基于引用:启用基于缓存键值的垃圾回收。
Java种有四种引用:强引用,软引用,弱引用和虚引用,caffeine可以将值封装成弱引用或软引用。
软引用:如果一个对象只具有软引用,则内存空间足够,垃圾回收器就不会回收它;如果内存空间不足了,就会回收这些对象的内存。
弱引用:在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会
回收它的内存。
3、统计
Caffeine提供了一种记录缓存使用统计信息的方法,可以实时监控缓存当前的状态,以评估缓存的健康程度以及缓存命中率等,方便后
续调整参数。
4、高效的缓存淘汰算法
缓存淘汰算法的作用是在有限的资源内,尽可能识别出哪些数据在短时间会被重复利用,从而提高缓存的命中率。常用的缓存淘汰算法有
LRU、LFU、FIFO等。
FIFO:先进先出。选择最先进入的数据优先淘汰。 LRU:最近最少使用。选择最近最少使用的数据优先淘汰。 LFU:最不经常使用。选择在一段时间内被使用次数最少的数据优先淘汰。
LRU(Least Recently Used)算法认为最近访问过的数据将来被访问的几率也更高。
LRU通常使用链表来实现,如果数据添加或者被访问到则把数据移动到链表的头部,链表的头部为热数据,链表的尾部如冷数据,当
数据满时,淘汰尾部的数据。
LFU(Least Frequently Used)算法根据数据的历史访问频率来淘汰数据,其核心思想是“如果数据过去被访问多次,那么将来被访问
的频率也更高”。根据LFU的思想,如果想要实现这个算法,需要额外的一套存储用来存每个元素的访问次数,会造成内存资源的浪费。
Caffeine采用了一种结合LRU、LFU优点的算法:W-TinyLFU,其特点:高命中率、低内存占用。
5、其他说明
Caffeine的底层数据存储采用ConcurrentHashMap。因为Caffeine面向JDK8,在jdk8中ConcurrentHashMap增加了红黑树,在hash冲突
严重时也能有良好的读性能。
五、基于Spring Cache实现二级缓存(Caffeine+Redis)
前面说了,使用了redis缓存,也会存在一定程度的网络传输上的消耗,所以会考虑应用内缓存,但有点很重要的要记住:
应用内缓存可以理解成比redis缓存更珍惜的资源,所以,caffeine 不适用于数据量大,并且缓存命中率极低的业务场景,如用户维度的缓存。
当前项目针对应用都部署了多个节点,一级缓存是在应用内的缓存,所以当对数据更新和清除时,需要通知所有节点进行清理缓存的操作。
可以有多种方式来实现这种效果,比如:zookeeper、MQ等,但是既然用了redis缓存,redis本身是有支持订阅/发布功能的,所以就
不依赖其他组件了,直接使用redis的通道来通知其他节点进行清理缓存的操作。
当某个key进行更新删除操作时,通过发布订阅的方式通知其它节点进行删除该key本地的一级缓存就可以了。
具体具体项目代码这里就不再粘贴出来了,这样只粘贴如何引用这个starter包。
1、maven引入使用
<dependency> <groupId>com.jincou</groupId> <artifactId>redis-caffeine-cache-starter</artifactId> <version>1.0.0</version> </dependency>
2、application.yml
添加二级缓存相关配置
# 二级缓存配置
# 注:caffeine 不适用于数据量大,并且缓存命中率极低的业务场景,如用户维度的缓存。请慎重选择。
l2cache:
config:
# 是否存储空值,默认true,防止缓存穿透
allowNullValues: true
# 组合缓存配置
composite:
# 是否全部启用一级缓存,默认false
l1AllOpen: false
# 是否手动启用一级缓存,默认false
l1Manual: true
# 手动配置走一级缓存的缓存key集合,针对单个key维度
l1ManualKeySet:
- userCache:user01
- userCache:user02
- userCache:user03
# 手动配置走一级缓存的缓存名字集合,针对cacheName维度
l1ManualCacheNameSet:
- userCache
- goodsCache
# 一级缓存
caffeine:
# 是否自动刷新过期缓存 true 是 false 否
autoRefreshExpireCache: false
# 缓存刷新调度线程池的大小
refreshPoolSize: 2
# 缓存刷新的频率(秒)
refreshPeriod: 10
# 写入后过期时间(秒)
expireAfterWrite: 180
# 访问后过期时间(秒)
expireAfterAccess: 180
# 初始化大小
initialCapacity: 1000
# 最大缓存对象个数,超过此数量时之前放入的缓存将失效
maximumSize: 3000
# 二级缓存
redis:
# 全局过期时间,单位毫秒,默认不过期
defaultExpiration: 300000
# 每个cacheName的过期时间,单位毫秒,优先级比defaultExpiration高
expires: {userCache: 300000,goodsCache: 50000}
# 缓存更新时通知其他节点的topic名称 默认 cache:redis:caffeine:topic
topic: cache:redis:caffeine:topic3、启动类上增加@EnableCaching
/**
* 启动类
*/
@EnableCaching
@SpringBootApplication
public class CacheApplication {
public static void main(String[] args) {
SpringApplication.run(CacheApplication.class, args);
}
}4、在需要缓存的方法上增加@Cacheable注解
/**
* 测试
*/
@Service
public class CaffeineCacheService {
private final Logger logger = LoggerFactory.getLogger(CaffeineCacheService.class);
/**
* 用于模拟db
*/
private static Map<String, UserDTO> userMap = new HashMap<>();
{
userMap.put("user01", new UserDTO("1", "张三"));
userMap.put("user02", new UserDTO("2", "李四"));
userMap.put("user03", new UserDTO("3", "王五"));
userMap.put("user04", new UserDTO("4", "赵六"));
}
/**
* 获取或加载缓存项
*/
@Cacheable(key = "'cache_user_id_' + #userId", value = "userCache")
public UserDTO queryUser(String userId) {
UserDTO userDTO = userMap.get(userId);
try {
Thread.sleep(1000);// 模拟加载数据的耗时
} catch (InterruptedException e) {
e.printStackTrace();
}
logger.info("加载数据:{}", userDTO);
return userDTO;
}
/**
* 获取或加载缓存项
* <p>
* 注:因底层是基于caffeine来实现一级缓存,所以利用的caffeine本身的同步机制来实现
* sync=true 则表示并发场景下同步加载缓存项,
* sync=true,是通过get(Object key, Callable<T> valueLoader)来获取或加载缓存项,此时valueLoader(加载缓存项的具体逻辑)会被缓存起来,所以CaffeineCache在定时刷新过期缓存时,缓存项过期则会重新加载。
* sync=false,是通过get(Object key)来获取缓存项,由于没有valueLoader(加载缓存项的具体逻辑),所以CaffeineCache在定时刷新过期缓存时,缓存项过期则会被淘汰。
* <p>
*/
@Cacheable(value = "userCache", key = "#userId", sync = true)
public List<UserDTO> queryUserSyncList(String userId) {
UserDTO userDTO = userMap.get(userId);
List<UserDTO> list = new ArrayList();
list.add(userDTO);
logger.info("加载数据:{}", list);
return list;
}
/**
* 更新缓存
*/
@CachePut(value = "userCache", key = "#userId")
public UserDTO putUser(String userId, UserDTO userDTO) {
return userDTO;
}
/**
* 淘汰缓存
*/
@CacheEvict(value = "userCache", key = "#userId")
public String evictUserSync(String userId) {
return userId;
}
} 今天关于《基于Spring Cache如何实现Caffeine+Redis二级缓存》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于redis,Spring,cache的内容请关注golang学习网公众号!
什么是 MySQL NULL 安全等于运算符以及它与比较运算符有何不同?
- 上一篇
- 什么是 MySQL NULL 安全等于运算符以及它与比较运算符有何不同?
- 下一篇
- Redis基础知识点有哪些
-
- 数据库 · Redis | 12小时前 |
- 监控Redis集群健康状态的工具与指标
- 112浏览 收藏
-
- 数据库 · Redis | 1星期前 |
- Redis数据安全防护全攻略
- 252浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis主从复制故障排查与修复技巧
- 302浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis与HBase存储方案详解
- 325浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis数据安全防护全攻略
- 157浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- 高并发Redis优化技巧分享
- 257浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis数据安全防护全攻略
- 398浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis配置加密方法与安全设置
- 232浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- RedisHyperLogLog高效统计技巧
- 283浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis与MySQL缓存同步方法详解
- 141浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis布隆过滤器防穿透原理解析
- 312浏览 收藏
-
- 数据库 · Redis | 1个月前 |
- Redis容器化部署实战技巧分享
- 195浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3166次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3378次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3407次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4511次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3787次使用
-
- redis复制有可能碰到的问题汇总
- 2023-01-01 501浏览
-
- 使用lua+redis解决发多张券的并发问题
- 2023-01-27 501浏览
-
- Redis应用实例分享:社交媒体平台设计
- 2023-06-21 501浏览
-
- 使用Python和Redis构建日志分析系统:如何实时监控系统运行状况
- 2023-08-08 501浏览
-
- 如何利用Redis和Python实现消息队列功能
- 2023-08-16 501浏览

