Golang实现图片的分割和内容识别的方法
有志者,事竟成!如果你在学习Golang,那么本文《Golang实现图片的分割和内容识别的方法》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~
Golang实现图片的分割和内容识别的方法
随着人工智能和计算机视觉技术的进步,图片的分割和内容识别在各个领域中扮演着越来越重要的角色。本文将介绍如何使用Golang实现图片的分割和内容识别的方法,并附带代码示例。
在开始之前,我们需要先安装几个必要的Go包。首先,我们需要安装"github.com/otiai10/gosseract/v2",它是一个用于文字识别的Golang库。其次,我们还需要安装"gonum.org/v1/gonum/mat",它是一个用于矩阵操作的Golang库。可以使用以下命令进行安装:
go get github.com/otiai10/gosseract/v2 go get -u gonum.org/v1/gonum/...
接下来,我们将通过以下步骤来实现图片的分割和内容识别。
步骤一:读取图片并进行灰度处理
首先,我们需要从文件中读取图片,并将其转换为灰度图像。代码示例如下:
package main import ( "fmt" "image" "image/color" "image/jpeg" "os" ) func main() { file, err := os.Open("image.jpg") if err != nil { fmt.Println("图片读取失败:", err) return } defer file.Close() img, err := jpeg.Decode(file) if err != nil { fmt.Println("图片解码失败:", err) return } gray := image.NewGray(img.Bounds()) for x := gray.Bounds().Min.X; x < gray.Bounds().Max.X; x++ { for y := gray.Bounds().Min.Y; y < gray.Bounds().Max.Y; y++ { r, g, b, _ := img.At(x, y).RGBA() grayColor := color.Gray{(r + g + b) / 3} gray.Set(x, y, grayColor) } } }
在这段代码中,我们首先打开并读取了一张名为"image.jpg"的图片。然后,我们通过"jpeg.Decode"函数将图片解码为图像对象。接下来,我们创建了一个新的灰度图像对象"gray",并使用双重循环将原始图像转换为灰度图像。
步骤二:进行图片的分割
在得到灰度图像后,我们可以使用一些图像处理算法对图片进行分割。这里我们使用OTSU算法进行阈值分割,代码示例如下:
package main import ( "fmt" "image" "image/color" "image/jpeg" "math" "os" ) func main() { // ... // 分割图片 bounds := gray.Bounds() threshold := otsu(gray) // OTSU算法获取阈值 binary := image.NewGray(bounds) for x := bounds.Min.X; x < bounds.Max.X; x++ { for y := bounds.Min.Y; y < bounds.Max.Y; y++ { if gray.GrayAt(x, y).Y > threshold { binary.Set(x, y, color.Gray{255}) } else { binary.Set(x, y, color.Gray{0}) } } } } // OTSU算法计算阈值 func otsu(img *image.Gray) uint32 { var hist [256]int bounds := img.Bounds() for x := bounds.Min.X; x < bounds.Max.X; x++ { for y := bounds.Min.Y; y < bounds.Max.Y; y++ { hist[img.GrayAt(x, y).Y]++ } } total := bounds.Max.X * bounds.Max.Y var sum float64 for i := 0; i < 256; i++ { sum += float64(i) * float64(hist[i]) } var sumB float64 wB := 0 wF := 0 var varMax float64 threshold := 0 for t := 0; t < 256; t++ { wB += hist[t] if wB == 0 { continue } wF = total - wB if wF == 0 { break } sumB += float64(t) * float64(hist[t]) mB := sumB / float64(wB) mF := (sum - sumB) / float64(wF) var between float64 = float64(wB) * float64(wF) * (mB - mF) * (mB - mF) if between >= varMax { threshold = t varMax = between } } return uint32(threshold) }
在这段代码中,我们定义了一个名为"otsu"的函数,用于计算OTSU算法的阈值。然后,我们在"main"函数中使用该函数获取阈值。接下来,我们创建一个新的二值图像"binary",并使用双重循环将灰度图像进行阈值分割。
步骤三:进行内容识别
在分割图像后,我们可以使用"gosseract"库对各个区域的内容进行识别。代码示例如下:
package main import ( "fmt" "image" "image/color" "image/jpeg" "os" "strings" "github.com/otiai10/gosseract/v2" ) func main() { // ... client := gosseract.NewClient() defer client.Close() texts := make([]string, 0) bounds := binary.Bounds() for x := bounds.Min.X; x < bounds.Max.X; x++ { for y := bounds.Min.Y; y < bounds.Max.Y; y++ { if binary.GrayAt(x, y).Y == 255 { continue } sx := x sy := y ex := x ey := y for ; ex < bounds.Max.X && binary.GrayAt(ex, y).Y == 0; ex++ { } for ; ey < bounds.Max.Y && binary.GrayAt(x, ey).Y == 0; ey++ { } rect := image.Rect(sx, sy, ex, ey) subImg := binary.SubImage(rect) pix := subImg.Bounds().Max.X * subImg.Bounds().Max.Y blackNum := 0 for i := subImg.Bounds().Min.X; i < subImg.Bounds().Max.X; i++ { for j := subImg.Bounds().Min.Y; j < subImg.Bounds().Max.Y; j++ { if subImg.At(i, j) == color.Gray{255} { blackNum++ } } } if float64(blackNum)/float64(pix) < 0.1 { // 去除噪音 continue } output, _ := client.ImageToText(subImg) output = strings.ReplaceAll(output, " ", "") output = strings.ReplaceAll(output, " ", "") texts = append(texts, output) } } fmt.Println(texts) }
在这段代码中,我们使用"gosseract"库中的"NewClient"和"Close"函数来创建和关闭识别客户端。然后,我们使用双重循环遍历分割后的二值图像。对于非白色区域,我们获取该区域的坐标范围,并将其转换为子图像。接下来,我们计算子图像中的黑色像素点占比,以去除噪音。最后,我们通过"ImageToText"函数将子图像转换为文本,并将结果保存在"texts"数组中。
通过以上步骤,我们已经完成了使用Golang实现图片的分割和内容识别的方法。你可以根据自己的需要对代码进行修改和优化,以适应不同的场景和需求。希望本文能够对你理解和应用图片的分割和内容识别技术提供一些帮助。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于Golang的相关知识,也可关注golang学习网公众号。

- 上一篇
- 解决golang报错:non-interface type cannot be used as type interface,解决方法

- 下一篇
- 微信发布 2023 年 7 月公众平台辟谣报告:处理 6793 篇不实文章,辟谣 213 篇文章
-
- Golang · Go教程 | 4小时前 |
- Golang构建地理微服务:GeoHash与RedisGEO集成教程
- 254浏览 收藏
-
- Golang · Go教程 | 4小时前 |
- Go1.18+模糊测试详解与使用指南
- 220浏览 收藏
-
- Golang · Go教程 | 4小时前 |
- Golang单元测试教程:用testing包验证代码
- 235浏览 收藏
-
- Golang · Go教程 | 4小时前 |
- Golang清理无用依赖,gomodprune使用教程
- 404浏览 收藏
-
- Golang · Go教程 | 4小时前 |
- Go语言整合前端,AppEngine实战教程
- 260浏览 收藏
-
- Golang · Go教程 | 4小时前 |
- Golang享元模式与sync.Pool优化解析
- 454浏览 收藏
-
- Golang · Go教程 | 4小时前 |
- Golang反射实现依赖注入详解
- 176浏览 收藏
-
- Golang · Go教程 | 4小时前 |
- 多版本Go共享库支持构建指南
- 110浏览 收藏
-
- Golang · Go教程 | 4小时前 |
- Golang不可变数据实现技巧
- 374浏览 收藏
-
- Golang · Go教程 | 4小时前 |
- Golangmap初始化方式详解
- 395浏览 收藏
-
- Golang · Go教程 | 5小时前 |
- Golang指针与map值修改技巧
- 369浏览 收藏
-
- Golang · Go教程 | 5小时前 |
- Golang装饰器模式详解与函数包装实现
- 371浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 283次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 275次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 273次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 287次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 300次使用
-
- Golangmap实践及实现原理解析
- 2022-12-28 505浏览
-
- 试了下Golang实现try catch的方法
- 2022-12-27 502浏览
-
- Go语言中Slice常见陷阱与避免方法详解
- 2023-02-25 501浏览
-
- Golang中for循环遍历避坑指南
- 2023-05-12 501浏览
-
- Go语言中的RPC框架原理与应用
- 2023-06-01 501浏览